---
title: "Head pose"
output:
rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Head pose}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,eval = FALSE,echo = T)
```
## Intro
The [fastai](https://github.com/fastai/fastai) library simplifies training fast and accurate neural nets using modern best practices. See the fastai website to get started. The library is based on research into deep learning best practices undertaken at ```fast.ai```, and includes "out of the box" support for ```vision```, ```text```, ```tabular```, and ```collab``` (collaborative filtering) models.
## Task
Our task is to find the center of the head in each image.
To achieve the goal, we need to do the following:
- upload images with ```DataBlock```
- add red points to the images
Upload an example:
```{r}
library(fastai)
library(magrittr)
path = 'biwi_head_pose'
fname = '09/frame_00667_rgb.jpg'
img = Image_create(paste(path,fname,sep = '/'))
img %>% show() %>% plot()
cal = readr::read_lines(paste(path,'01/rgb.cal',sep = '/'), n_max = 3) %>% trimws() %>%
strsplit('\\s') %>% do.call(rbind,.) %>% apply(.,2,as.numeric)
```
To add the points, we need to write simple functions:
```{r}
img2txt_name <- function(f) {
paste(
substr(f, 1, nchar(f)-7), 'pose.txt',
sep = ''
)
}
convert_biwi <- function(coords) {
c1 = coords[1] * cal[1,][1]/coords[3] + cal[1,][3]
c2 = coords[2] * cal[2,][2]/coords[3] + cal[2,][3]
return(tensor(c1,c2))
}
get_ctr <- function(f) {
# trick to make dataloaders work
f = as.character(f)
ctr = readr::read_lines(img2txt_name(f), skip = 4, n_max = 1) %>% trimws() %>%
strsplit('\\s') %>% unlist() %>% as.numeric()
convert_biwi(ctr)
}
get_ip <- function(img, pts) {
TensorPoint_create(pts, img_size = img$size)
}
```
```{r}
ctr = readr::read_lines(img2txt_name(paste(path,fname,sep = '/')),
skip = 4, n_max = 1) %>% trimws() %>%
strsplit('\\s') %>% unlist() %>% as.numeric()
```
Now, it is easier to add red points:
```{r}
ctr = get_ctr(paste(path,fname,sep = '/'))
ax = img %>% show(figsize = c(6, 6))
img %>% get_ip(ctr) %>% show(ctx = ax) %>% plot()
```
## Preparation
Prepare data laoder object and see batch:
```{r}
dblock = DataBlock(blocks = list(ImageBlock(), PointBlock()),
get_items = get_image_files(),
splitter = FuncSplitter(function(x) x$parent$name == '13'),
get_y = get_ctr,
batch_tfms = list(aug_transforms(size = c(120,160)),
Normalize_from_stats(imagenet_stats()
)
)
)
dls = dblock %>% dataloaders(path, path = path, bs = 64)
dls %>% show_batch(max_n = 9, figsize = c(9,6))
```
## Fit
Run for 5 epochs and see results:
```{r}
learn = cnn_learner(dls, resnet34())
learn %>% lr_find()
learn %>% plot_lr_find()
lr = 2e-2
learn %>% fit_one_cycle(5, slice(lr))
```
```{r}
learn %>% show_results(dpi = 200)
```
```
epoch train_loss valid_loss time
0 1.818259 0.861968 00:35
1 0.222080 0.056300 00:34
2 0.028511 0.012499 00:33
3 0.017333 0.003378 00:33
4 0.015135 0.004777 00:33
```