--- title: "Head pose" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Head pose} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE,eval = FALSE,echo = T) ``` ## Intro The [fastai](https://github.com/fastai/fastai) library simplifies training fast and accurate neural nets using modern best practices. See the fastai website to get started. The library is based on research into deep learning best practices undertaken at ```fast.ai```, and includes "out of the box" support for ```vision```, ```text```, ```tabular```, and ```collab``` (collaborative filtering) models. ## Task Our task is to find the center of the head in each image. To achieve the goal, we need to do the following: - upload images with ```DataBlock``` - add red points to the images Upload an example: ```{r} library(fastai) library(magrittr) path = 'biwi_head_pose' fname = '09/frame_00667_rgb.jpg' img = Image_create(paste(path,fname,sep = '/')) img %>% show() %>% plot() cal = readr::read_lines(paste(path,'01/rgb.cal',sep = '/'), n_max = 3) %>% trimws() %>% strsplit('\\s') %>% do.call(rbind,.) %>% apply(.,2,as.numeric) ```
_
To add the points, we need to write simple functions: ```{r} img2txt_name <- function(f) { paste( substr(f, 1, nchar(f)-7), 'pose.txt', sep = '' ) } convert_biwi <- function(coords) { c1 = coords[1] * cal[1,][1]/coords[3] + cal[1,][3] c2 = coords[2] * cal[2,][2]/coords[3] + cal[2,][3] return(tensor(c1,c2)) } get_ctr <- function(f) { # trick to make dataloaders work f = as.character(f) ctr = readr::read_lines(img2txt_name(f), skip = 4, n_max = 1) %>% trimws() %>% strsplit('\\s') %>% unlist() %>% as.numeric() convert_biwi(ctr) } get_ip <- function(img, pts) { TensorPoint_create(pts, img_size = img$size) } ``` ```{r} ctr = readr::read_lines(img2txt_name(paste(path,fname,sep = '/')), skip = 4, n_max = 1) %>% trimws() %>% strsplit('\\s') %>% unlist() %>% as.numeric() ``` Now, it is easier to add red points: ```{r} ctr = get_ctr(paste(path,fname,sep = '/')) ax = img %>% show(figsize = c(6, 6)) img %>% get_ip(ctr) %>% show(ctx = ax) %>% plot() ```
_
## Preparation Prepare data laoder object and see batch: ```{r} dblock = DataBlock(blocks = list(ImageBlock(), PointBlock()), get_items = get_image_files(), splitter = FuncSplitter(function(x) x$parent$name == '13'), get_y = get_ctr, batch_tfms = list(aug_transforms(size = c(120,160)), Normalize_from_stats(imagenet_stats() ) ) ) dls = dblock %>% dataloaders(path, path = path, bs = 64) dls %>% show_batch(max_n = 9, figsize = c(9,6)) ```
_
## Fit Run for 5 epochs and see results: ```{r} learn = cnn_learner(dls, resnet34()) learn %>% lr_find() learn %>% plot_lr_find() lr = 2e-2 learn %>% fit_one_cycle(5, slice(lr)) ``` ```{r} learn %>% show_results(dpi = 200) ``` ``` epoch train_loss valid_loss time 0 1.818259 0.861968 00:35 1 0.222080 0.056300 00:34 2 0.028511 0.012499 00:33 3 0.017333 0.003378 00:33 4 0.015135 0.004777 00:33 ```
_