--- title: "Object detection" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Object detection} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE,eval = FALSE,echo = T) ``` ## Intro The [fastai](https://github.com/fastai/fastai) library simplifies training fast and accurate neural nets using modern best practices. See the fastai website to get started. The library is based on research into deep learning best practices undertaken at ```fast.ai```, and includes "out of the box" support for ```vision```, ```text```, ```tabular```, and ```collab``` (collaborative filtering) models. Original demo by [Zachary](https://github.com/muellerzr/Practical-Deep-Learning-for-Coders-2.0/blob/master/Computer%20Vision/06_Object_Detection.ipynb) ## Dataset Grab data: ```{r} URLs_COCO_TINY() ``` Read ```json``` file and get annotations: ```{r} c(images, lbl_bbox) %<-% get_annotations('coco_tiny/train.json') names(lbl_bbox) = images img2bbox = lbl_bbox ``` ## Dataloader Prepare laoder object: ```{r} get_y = list(function(o) img2bbox[[o$name]][[1]], function(o) as.list(img2bbox[[o$name]][[2]])) coco = DataBlock(blocks = list(ImageBlock(), BBoxBlock(), BBoxLblBlock()), get_items = get_image_files(), splitter = RandomSplitter(), get_y = get_y, item_tfms = Resize(128), batch_tfms = aug_transforms(), n_inp = 1) dls = coco %>% dataloaders('coco_tiny/train') dls %>% show_batch(max_n = 12) ```
_
## RetinaNet Build a model with RetinaNet components: ```{r} encoder = create_body(resnet34(), pretrained = TRUE) arch = RetinaNet(encoder, get_c(dls), final_bias=-4) ratios = c(1/2,1,2) scales = c(1,2**(-1/3), 2**(-2/3)) crit = RetinaNetFocalLoss(scales = scales, ratios = ratios) nn = nn() retinanet_split = function(m) { L(m$encoder,nn$Sequential(m$c5top6, m$p6top7, m$merges, m$smoothers, m$classifier, m$box_regressor))$map(params()) } ``` ## Fit Unfreeze and train model: ```{r} learn = Learner(dls, arch, loss_func = crit, splitter = retinanet_split) learn$freeze() learn %>% fit_one_cycle(10, slice(1e-5, 1e-4)) ``` ``` epoch train_loss valid_loss time 0 3.377425 3.352676 00:06 1 3.304372 2.941969 00:03 2 3.400184 2.811601 00:03 3 3.239992 2.896531 00:03 4 3.159638 3.090069 00:03 5 3.117127 2.978687 00:03 6 3.079744 2.832738 00:03 7 3.035829 2.801513 00:03 8 2.996779 2.798598 00:03 9 2.962824 2.798002 00:03 ```