---
title: "Optimizer"
output:
rmarkdown::html_vignette
vignette: >
%\VignetteIndexEntry{Optimizer}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE,eval = FALSE,echo = T)
```
## Intro
The [fastai](https://github.com/fastai/fastai) library simplifies training fast and accurate neural nets using modern best practices. See the fastai website to get started. The library is based on research into deep learning best practices undertaken at ```fast.ai```, and includes "out of the box" support for ```vision```, ```text```, ```tabular```, and ```collab``` (collaborative filtering) models.
Interesting posts about NN from scratch using R:
- [Part 1](https://rviews.rstudio.com/2020/07/20/shallow-neural-net-from-scratch-using-r-part-1/)
- [Part 2](https://rviews.rstudio.com/2020/07/24/building-a-neural-net-from-scratch-using-r-part-2/)
## Basic steppers
To be able to give examples of optimizer steps, we will need some steppers, like the following:
```{r}
library(magrittr)
library(fastai)
tst_param = function(val, grad = NULL) {
"Create a tensor with `val` and a gradient of `grad` for testing"
res = tensor(val) %>% float()
if(is.null(grad)) {
grad = tensor(val / 10)
} else {
grad = tensor(grad)
}
res$grad = grad %>% float()
res
}
```
```{r}
p = tst_param(1., 0.1)
p
```
```
tensor(1.)
```
```{r}
sgd_step(p, 1.)
p
```
```
tensor(0.9000)
```
```{r}
p$grad
```
```
tensor(0.1000)
```
## Weight decay
```{r}
p = tst_param(1., 0.1)
weight_decay(p, 1., 0.1)
p
```
```
tensor(0.9000)
```
## L2 regularization
```{r}
p = tst_param(1., 0.1)
l2_reg(p, 1., 0.1)
p$grad
```
```
tensor(0.2000)
```
## Making the step
This method will loop over all param groups, then all parameters for which ```grad``` is not ```NULL``` and call each function in ```stepper```, passing it the parameter p with the hyper-parameters in the corresponding dict in ```hypers```.
```{r}
params = L(lapply(0:3, function(x) tst_param(x)))
opt = Optimizer(params, sgd_step, lr=0.1)
opt$step()
str(params$items)
```
```
List of 4
$ :tensor(0.)
$ :tensor(0.9900)
$ :tensor(1.9800)
$ :tensor(2.9700)
```
```{r}
params = L(lapply(0:3, function(x) tst_param(x)))
opt = Optimizer(params, list(weight_decay, sgd_step), lr=0.1, wd = 0.1)
opt$step()
str(params$items)
```
```
List of 4
$ :tensor(0.)
$ :tensor(0.9800)
$ :tensor(1.9600)
$ :tensor(2.9400)
```
```{r}
params = L(lapply(0:3, function(x) tst_param(x)))
opt = Optimizer(params, sgd_step, lr=0.1)
try(params[3]$grad <- NULL,
TRUE)
params[3]$grad
opt$step()
str(params$items)
```
```
List of 4
$ :tensor(0.)
$ :tensor(0.9900)
$ :tensor(1.9800)
$ :tensor(3.)
```
```{r}
params = L(lapply(0:3, function(x) tst_param(x)))
opt = Optimizer(list(params[0:1],params[2:3]), sgd_step, lr=0.1)
opt$hypers$items[[1]][[1]] = 0.01
opt$step()
str(params$items)
```
```
List of 4
$ :tensor(0.)
$ :tensor(0.9990)
$ :tensor(1.9800)
$ :tensor(2.9700)
```
## Zero grad
```{r}
params = L(lapply(0:3, function(x) tst_param(x)))
opt = Optimizer(params, list(weight_decay, sgd_step), lr=0.1, wd = 0.1)
opt$zero_grad()
str(params$items)
```
```
List of 4
$ :tensor(0.)
$ :tensor(1.)
$ :tensor(2.)
$ :tensor(3.)
```
## Average grad
Keeps track of the avg grads of ```p``` in ```state``` with ```mom```.
```dampening = FALSE`` gives the classical formula for momentum in SGD:
- new_val = old_val * mom + grad
whereas ```dampening = TRUE``` makes it an exponential moving average:
```{r}
p = tst_param(c(1,2,3), c(4,5,6))
state = average_grad(p, mom = 0.9, dampening = FALSE, grad_avg = NULL)
p$grad
# tensor([4., 5., 6.])
state = average_grad(p, mom=0.9, dampening = TRUE)
p$grad*0.1
# tensor([0.4000, 0.5000, 0.6000])
p$grad*(0.1*0.9+0.1)
# tensor([0.7600, 0.9500, 1.1400])
```
## Average sqr_grad
```dampening = FALSE``` gives the classical formula for momentum in SGD:
- new_val = old_val * mom + grad**2
whereas ```dampening = TRUE``` makes it an exponential moving average:
- new_val = old_val * mom + (grad ** 2) * (1-mom)
```{r}
p = tst_param(c(1,2,3), c(4,5,6))
state = average_sqr_grad(p, sqr_mom = 0.99, dampening = FALSE)
p$grad$pow(2)
# tensor([16., 25., 36.])
p$grad$pow(2) * 1.99
# tensor([31.8400, 49.7500, 71.6400])
state = average_sqr_grad(p, sqr_mom = 0.99)
p$grad$pow(2) * 1e-2
# tensor([0.1600, 0.2500, 0.3600])
state = average_sqr_grad(p, sqr_mom = 0.99)
p$grad$pow(2)*(0.01*0.99+0.01)
# tensor([0.3184, 0.4975, 0.7164])
params = L(lapply(0:3, function(x) tst_param(x)))
opt = Optimizer(params, sgd_step, lr = 0.1)
opt$freeze_to(1L)
```
## SGD
A ```Optimizer``` for SGD with ```lr``` and ```mom``` and ```params```.
Optional weight decay of ```wd``` is applied, as true weight decay (decay the weights directly) if ```decouple_wd = TRUE``` else as ```L2``` regularization (add the decay to the gradients).
```{r}
params = L(lapply(0:3, function(x) tst_param(x)))
opt = SGD(params, lr = 0.1)
opt$step()
str(params$items)
```
```
List of 4
$ :tensor(0.)
$ :tensor(0.9900)
$ :tensor(1.9800)
$ :tensor(2.9700)
```
```{r}
params = L(lapply(0:3, function(x) tst_param(x)))
opt = SGD(params, lr = 0.1, mom = 0.9)
opt$step()
str(params$items)
```
```
List of 4
$ :tensor(0.)
$ :tensor(0.9900)
$ :tensor(1.9800)
$ :tensor(2.9700)
```
Test weight decay, notice how we can see that ```L2``` regularization is different from weight decay even for simple SGD with momentum.
```{r}
params = L(lapply(0:3, function(x) tst_param(x)))
#Weight decay
opt = SGD(params, lr=0.1, mom=0.9, wd=0.1)
opt$step()
str(params$items)
```
```
List of 4
$ :tensor(0.)
$ :tensor(0.9800)
$ :tensor(1.9600)
$ :tensor(2.9400)
```
```{r}
params = L(lapply(0:3, function(x) tst_param(x)))
#L2 reg
opt = SGD(params, lr=0.1, mom=0.9, wd=0.1, decouple_wd=FALSE)
opt$step()
str(params$items)
```
```
List of 4
$ :tensor(0.)
$ :tensor(0.9800)
$ :tensor(1.9600)
$ :tensor(2.9400)
```
## RMSProp
A ```Optimizer``` for ```RMSProp``` with ```lr```, ```sqr_mom```, ```mom``` and ```params```.
```RMSProp``` was introduced by Geoffrey Hinton in his course. What is named ```sqr_mom``` here is the ```alpha``` in the course. Optional weight decay of ```wd``` is applied, as true weight decay (decay the weights directly) if ```decouple_wd = TRUE``` else as L2 regularization (add the decay to the gradients).
```{r}
params = tst_param(c(1:3), c(0.1,0.2,0.3))
opt = RMSProp(params, lr=0.1)
opt$step()
opt$step()
step = (-0.1 * 0.1) / (sqrt((0.01*0.99+0.01) * 0.1**2) + 1e-8)
params; tensor(c(step, 1+step, 2+step))
```
```
tensor([-0.7089, 0.2911, 1.2911])
tensor([-0.7089, 0.2911, 1.2911])
```
```{r}
params = tst_param(c(1:3), c(0.1,0.2,0.3))
opt = RMSProp(params, lr=0.1, mom=0.9)
opt$step()
opt$step()
step = (- 0.1 * (0.1 + 0.9*0.1)) / (sqrt((0.01*0.99+0.01) * 0.1**2) + 1e-8)
params; tensor(c(step, 1+step, 2+step))
```
```
tensor([-1.3469, -0.3469, 0.6531])
tensor([-1.3469, -0.3469, 0.6531])
```
## Adam
A Optimizer for Adam with ```lr```, ```mom```, ```sqr_mom```, ```eps``` and ```params```.
Adam was introduced by Diederik P. Kingma and Jimmy Ba in Adam: A Method for Stochastic Optimization. For consistency across optimizers, we renamed ```beta1``` and ```beta2``` in the paper to ```mom``` and ```sqr_mom```. Note that our defaults also differ from the paper (0.99 for ```sqr_mom``` or ```beta2```, 1e-5 for ```eps```). Those values seem to be better from our experiments in a wide range of situations.
Optional weight decay of ```wd``` is applied, as true weight decay (decay the weights directly) if ```decouple_wd=TRUE``` else as ```L2``` regularization (add the decay to the gradients).
```{r}
params = tst_param(c(1:3), c(0.1,0.2,0.3))
opt = Adam(params, lr=0.1, wd=0)
opt$step()
step = (-0.1 * 0.1) / (sqrt(0.1**2) + 1e-8)
params; tensor(c(1+step, 2+step, 3+step))
```
```
tensor([0.9000, 1.9000, 2.9000])
tensor([0.9000, 1.9000, 2.9000])
```
```{r}
opt$step()
params;tensor(tensor(c(1+2*step, 2+2*step, 3+2*step)))
```
```
tensor([0.8000, 1.8000, 2.8000])
tensor([0.8000, 1.8000, 2.8000])
```
## RAdam
```{r}
beta = 0.99
r_inf = 2/(1-beta) - 1
rs = lapply(5:500, function(s) {r_inf - 2*s*beta**s/(1-beta**s)}) %>% as.numeric()
v = sqrt(((rs-4) * (rs-2) * r_inf)/((r_inf-4)*(r_inf-2)*rs))
df_high = data.frame(x = 1:length(v), y = v)
library(highcharter)
hchart(df_high,'line', hcaes(x,y))
```
## QHAdam
An Optimizer for Adam with ```lr```, ```mom```, ```sqr_mom```, ```nus```, ```eps``` and ```params```.
```{r}
params = tst_param(c(1:3), c(0.1,0.2,0.3))
opt = QHAdam(params, lr=0.1)
opt$step()
step = (-0.1 * (((1-0.7) * 0.1) + (0.7 * 0.1)) )/ (
sqrt(((1-1.0) * 0.1**2) + (1.0 * 0.1**2)) + 1e-8)
params; tensor(c(1+step, 2+step, 3+step))
# tensor([0.9000, 1.9000, 2.9000])
# tensor([0.9000, 1.9000, 2.9000])
opt$step()
params; tensor(c(1+2*step, 2+2*step, 3+2*step))
# tensor([0.8000, 1.8000, 2.8000])
# tensor([0.8000, 1.8000, 2.8000])
```
## Larc
A ```Optimizer``` for ```Adam``` with ```lr```, ```mom```, ```sqr_mom```, ```eps``` and ```params```.
The LARS optimizer was first introduced in Large Batch Training of Convolutional Networks then refined in its LARC variant (original LARS is with ```clip=FALSE```). A learning rate is computed for each individual layer with a certain ```trust_coefficient```, then clipped to be always less than ```lr```.
Optional weight decay of ```wd``` is applied, as true weight decay (decay the weights directly) if ```decouple_wd = TRUE``` else as ```L2``` regularization (add the decay to the gradients).
```{r}
params = list(tst_param(c(1:3), c(0.1,0.2,0.3)), tst_param(c(1:3), c(0.01,0.02,0.03)))
opt = Larc(params, lr=0.1)
opt$step()
#First param local lr is 0.02 < lr so it's not clipped
opt$state[params[[1]]]['local_lr']
```
```
$local_lr
tensor(0.0200)
```
```{r}
opt$state[params[[2]]]['local_lr']
```
```
$local_lr
[1] 0.1
```
```{r}
params = list(tst_param(c(1:3), c(0.1,0.2,0.3)), tst_param(c(1:3), c(0.01,0.02,0.03)))
opt = Larc(params, lr=0.1, clip = FALSE)
opt$step()
#Second param local lr is 0.2 > lr so it's clipped
opt$state[params[[1]]]['local_lr']
```
```
$local_lr
tensor(0.0200)
```
```{r}
opt$state[params[[2]]]['local_lr']
```
```
$local_lr
tensor(0.2000)
```
## LAMB
A ```Optimizer``` for Adam with ```lr```, ```mom```, ```sqr_mom```, ```eps``` and ```params```.
LAMB was introduced in [Large Batch Optimization for Deep Learning: Training BERT in 76 minutes](https://arxiv.org/abs/1904.00962). Intuitively, it's LARC applied to Adam. As in Adam, we renamed beta1 and beta2 in the paper to mom and sqr_mom. Note that our defaults also differ from the paper (0.99 for ```sqr_mom``` or ```beta2```, 1e-5 for ```eps```). Those values seem to be better from our experiments in a wide range of situations.
Optional weight decay of ```wd``` is applied, as true weight decay (decay the weights directly) if ```decouple_wd=TRUE``` else as L2 regularization (add the decay to the gradients).
```{r}
params = tst_param(c(1:3), c(0.1,0.2,0.3))
opt = Lamb(params, lr=0.1)
opt$step()
params
```
```
tensor([0.7840, 1.7840, 2.7840])
```
## Lookahead
```{r}
params = tst_param(c(1:3), c(0.1,0.2,0.3))
p = params$data$clone()
g = tensor(c(0.1,0.2,0.3))
opt = Lookahead(SGD(params, lr=0.1))
for(i in 1:5) {
opt$step()
}
#first 5 steps are normal SGD steps
params; p - g * 0.5
# tensor([0.9500, 1.9000, 2.8500])
# tensor([0.9500, 1.9000, 2.8500])
#Since k=6, sixth step is a moving average of the 6 SGD steps with the initial weight
opt$step()
params; p * 0.5 + (p-g*0.6) * 0.5
# tensor([0.9700, 1.9400, 2.9100])
# tensor([0.9700, 1.9400, 2.9100])
```