--- title: "Super-Resolution GAN" output: rmarkdown::html_vignette vignette: > %\VignetteIndexEntry{Super-Resolution GAN} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} --- ```{r setup, include=FALSE} knitr::opts_chunk$set(echo = TRUE,eval = FALSE,echo = T) ``` ## Intro The [fastai](https://github.com/fastai/fastai) library simplifies training fast and accurate neural nets using modern best practices. See the fastai website to get started. The library is based on research into deep learning best practices undertaken at ```fast.ai```, and includes "out of the box" support for ```vision```, ```text```, ```tabular```, and ```collab``` (collaborative filtering) models. ## Dataset Grab the pets dataset and Specify folders: ```{r} URLs_PETS() path = 'oxford-iiit-pet' path_hr = paste(path, 'images', sep = '/') path_lr = paste(path, 'crappy', sep = '/') ``` Prepare the input data by crappifying images: ```{r} # run this only for the first time, then skip items = get_image_files(path_hr) parallel(crappifier(path_lr, path_hr), items) ``` ## Parameters and dataloader ```{r} bs = 10 size = 64 arch = resnet34() get_dls = function(bs, size) { dblock = DataBlock(blocks = list(ImageBlock, ImageBlock), get_items = get_image_files, get_y = function(x) {paste(path_hr, as.character(x$name), sep = '/')}, splitter = RandomSplitter(), item_tfms = Resize(size), batch_tfms = list( aug_transforms(max_zoom = 2.), Normalize_from_stats( imagenet_stats() ) )) dls = dblock %>% dataloaders(path_lr, bs = bs, path = path) dls$c = 3L dls } dls_gen = get_dls(bs, size) ``` See batch: ```{r} dls_gen %>% show_batch(max_n = 4, dpi = 150) ```
_
## Fit Define loss function and create ```unet_learner```: ```{r} wd = 1e-3 y_range = c(-3.,3.) loss_gen = MSELossFlat() create_gen_learner = function() { unet_learner(dls_gen, arch, loss_func = loss_gen, config = unet_config(blur=TRUE, norm_type = "Weight", self_attention = TRUE, y_range = y_range)) } learn_gen = create_gen_learner() learn_gen %>% fit_one_cycle(2, pct_start = 0.8, wd = wd) ``` ``` epoch train_loss valid_loss time 0 0.025911 0.035153 00:42 1 0.019524 0.019408 00:39 ``` ## Conclusion Plot results: ```{r} learn_gen %>% show_results(max_n = 6, dpi = 200) ```
_