
Package: tfaddons (via r-universe)
September 12, 2024

Type Package

Title Interface to 'TensorFlow SIG Addons'

Version 0.10.3

Maintainer Turgut Abdullayev <turqut.a.314@gmail.com>

Description 'TensorFlow SIG Addons'
<https://www.tensorflow.org/addons> is a repository of
community contributions that conform to well-established API
patterns, but implement new functionality not available in core
'TensorFlow'. 'TensorFlow' natively supports a large number of
operators, layers, metrics, losses, optimizers, and more.
However, in a fast moving field like Machine Learning, there
are many interesting new developments that cannot be integrated
into core 'TensorFlow' (because their broad applicability is
not yet clear, or it is mostly used by a smaller subset of the
community).

License Apache License 2.0

URL https://github.com/henry090/tfaddons

BugReports https://github.com/henry090/tfaddons/issues

SystemRequirements TensorFlow >= 2.0 (https://www.tensorflow.org/)

Encoding UTF-8

LazyData true

RoxygenNote 7.1.2

Imports reticulate, tensorflow, rstudioapi, keras, purrr

Suggests knitr, rmarkdown, testthat, dplyr

VignetteBuilder knitr

Repository https://eagerai.r-universe.dev

RemoteUrl https://github.com/eagerai/tfaddons

RemoteRef HEAD

RemoteSha 640e4c26aa40a460655830e0d26a0e9806e74f9b

1

https://www.tensorflow.org/addons
https://github.com/henry090/tfaddons
https://github.com/henry090/tfaddons/issues

2 Contents

Contents
activation_gelu . 5
activation_hardshrink . 6
activation_lisht . 7
activation_mish . 7
activation_rrelu . 8
activation_softshrink . 9
activation_sparsemax . 10
activation_tanhshrink . 10
attention_bahdanau . 11
attention_bahdanau_monotonic . 12
attention_luong . 13
attention_luong_monotonic . 15
attention_monotonic . 16
attention_wrapper . 17
attention_wrapper_state . 19
callback_average_model_checkpoint . 20
callback_time_stopping . 21
callback_tqdm_progress_bar . 22
crf_binary_score . 23
crf_decode . 24
crf_decode_backward . 24
crf_decode_forward . 25
crf_forward . 25
crf_log_likelihood . 26
crf_log_norm . 27
crf_multitag_sequence_score . 27
crf_sequence_score . 28
crf_unary_score . 29
decoder . 29
decoder_base . 30
decoder_basic . 30
decoder_basic_output . 31
decoder_beam_search . 31
decoder_beam_search_output . 32
decoder_beam_search_state . 33
decoder_final_beam_search_output . 34
decode_dynamic . 34
extend_with_decoupled_weight_decay . 35
gather_tree . 36
gather_tree_from_array . 37
hardmax . 38
img_adjust_hsv_in_yiq . 38
img_angles_to_projective_transforms . 39
img_blend . 40
img_compose_transforms . 40
img_connected_components . 41

Contents 3

img_cutout . 42
img_dense_image_warp . 43
img_equalize . 44
img_euclidean_dist_transform . 45
img_flat_transforms_to_matrices . 46
img_from_4D . 46
img_get_ndims . 47
img_interpolate_bilinear . 47
img_interpolate_spline . 48
img_matrices_to_flat_transforms . 49
img_mean_filter2d . 50
img_median_filter2d . 51
img_random_cutout . 52
img_random_hsv_in_yiq . 53
img_resampler . 54
img_rotate . 55
img_sharpness . 56
img_shear_x . 56
img_shear_y . 57
img_sparse_image_warp . 57
img_to_4D . 58
img_transform . 59
img_translate . 60
img_translate_xy . 61
img_translations_to_projective_transforms . 62
img_unwrap . 62
img_wrap . 63
install_tfaddons . 63
layer_activation_gelu . 64
layer_correlation_cost . 64
layer_filter_response_normalization . 65
layer_group_normalization . 67
layer_instance_normalization . 68
layer_maxout . 70
layer_multi_head_attention . 70
layer_nas_cell . 72
layer_norm_lstm_cell . 73
layer_poincare_normalize . 75
layer_sparsemax . 76
layer_weight_normalization . 77
lookahead_mechanism . 78
loss_contrastive . 79
loss_giou . 80
loss_hamming . 81
loss_lifted_struct . 82
loss_npairs . 83
loss_npairs_multilabel . 83
loss_pinball . 84

4 Contents

loss_sequence . 85
loss_sigmoid_focal_crossentropy . 86
loss_sparsemax . 87
loss_triplet_hard . 88
loss_triplet_semihard . 89
metrics_f1score . 90
metric_cohen_kappa . 91
metric_fbetascore . 92
metric_hamming_distance . 93
metric_mcc . 94
metric_multilabel_confusion_matrix . 95
metric_rsquare . 96
optimizer_conditional_gradient . 97
optimizer_decay_adamw . 98
optimizer_decay_sgdw . 100
optimizer_lamb . 101
optimizer_lazy_adam . 103
optimizer_moving_average . 104
optimizer_novograd . 105
optimizer_radam . 107
optimizer_swa . 108
optimizer_yogi . 110
parse_time . 111
register_all . 112
register_custom_kernels . 113
register_keras_objects . 113
safe_cumprod . 114
sampler . 114
sampler_custom . 115
sampler_greedy_embedding . 115
sampler_inference . 116
sampler_sample_embedding . 117
sampler_scheduled_embedding_training . 118
sampler_scheduled_output_training . 118
sampler_training . 119
sample_bernoulli . 120
sample_categorical . 120
skip_gram_sample . 121
skip_gram_sample_with_text_vocab . 123
tfaddons_version . 126
tile_batch . 126
viterbi_decode . 127

Index 128

activation_gelu 5

activation_gelu Gelu

Description

Gaussian Error Linear Unit.

Usage

activation_gelu(x, approximate = TRUE)

Arguments

x A ‘Tensor‘. Must be one of the following types: ‘float16‘, ‘float32‘, ‘float64‘.

approximate bool, whether to enable approximation. Returns: A ‘Tensor‘. Has the same type
as ‘x‘.

Details

Computes gaussian error linear: ‘0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))‘ or ‘x *
P(X <= x) = 0.5 * x * (1 + erf(x / sqrt(2)))‘, where P(X) ~ N(0, 1), depending on whether approxima-
tion is enabled. See [Gaussian Error Linear Units (GELUs)](https://arxiv.org/abs/1606.08415) and
[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805).

Value

A ‘Tensor‘. Has the same type as ‘x‘.

Computes gaussian error linear

‘0.5 * x * (1 + tanh(sqrt(2 / pi) * (x + 0.044715 * x^3)))‘ or ‘x * P(X <= x) = 0.5 * x * (1 + erf(x /
sqrt(2)))‘, where P(X) ~ N(0, 1), depending on whether approximation is enabled.

Examples

Not run:
library(keras)
library(tfaddons)
model = keras_model_sequential() %>%
layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),

activation = activation_gelu)

End(Not run)

6 activation_hardshrink

activation_hardshrink Hardshrink

Description

Hard shrink function.

Usage

activation_hardshrink(x, lower = -0.5, upper = 0.5)

Arguments

x A ‘Tensor‘. Must be one of the following types: ‘float16‘, ‘float32‘, ‘float64‘.

lower ‘float‘, lower bound for setting values to zeros.

upper ‘float‘, upper bound for setting values to zeros. Returns: A ‘Tensor‘. Has the
same type as ‘x‘.

Details

Computes hard shrink function: ‘x if x < lower or x > upper else 0‘.

Value

A ‘Tensor‘. Has the same type as ‘x‘.

Computes hard shrink function

‘x if x < lower or x > upper else 0‘.

Examples

Not run:
library(keras)
library(tfaddons)
model = keras_model_sequential() %>%
layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),

activation = activation_hardshrink)

End(Not run)

activation_lisht 7

activation_lisht Lisht

Description

LiSHT: Non-Parameteric Linearly Scaled Hyperbolic Tangent Activation Function.

Usage

activation_lisht(x)

Arguments

x A ‘Tensor‘. Must be one of the following types: ‘float16‘, ‘float32‘, ‘float64‘.

Details

Computes linearly scaled hyperbolic tangent (LiSHT): ‘x * tanh(x)‘ See [LiSHT: Non-Parameteric
Linearly Scaled Hyperbolic Tangent Activation Function for Neural Networks](https://arxiv.org/abs/1901.05894).

Value

A ‘Tensor‘. Has the same type as ‘x‘.

Examples

Not run:
library(keras)
library(tfaddons)
model = keras_model_sequential() %>%
layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),

activation = activation_lisht)

End(Not run)

activation_mish Mish

Description

Mish: A Self Regularized Non-Monotonic Neural Activation Function.

Usage

activation_mish(x)

8 activation_rrelu

Arguments

x A ‘Tensor‘. Must be one of the following types: ‘float16‘, ‘float32‘, ‘float64‘.
Returns: A ‘Tensor‘. Has the same type as ‘x‘.

Details

Computes mish activation: x * tanh(softplus(x)) See [Mish: A Self Regularized Non-Monotonic
Neural Activation Function](https://arxiv.org/abs/1908.08681).

Value

A ‘Tensor‘. Has the same type as ‘x‘.

activation_rrelu Rrelu

Description

rrelu function.

Usage

activation_rrelu(
x,
lower = 0.125,
upper = 0.333333333333333,
training = NULL,
seed = NULL

)

Arguments

x A ‘Tensor‘. Must be one of the following types: ‘float16‘, ‘float32‘, ‘float64‘.

lower ‘float‘, lower bound for random alpha.

upper ‘float‘, upper bound for random alpha.

training ‘bool‘, indicating whether the ‘call‘ is meant for training or inference.

seed ‘int‘, this sets the operation-level seed. Returns:

Details

Computes rrelu function: ‘x if x > 0 else random(lower, upper) * x‘ or ‘x if x > 0 else x * (lower
+ upper) / 2‘ depending on whether training is enabled. See [Empirical Evaluation of Rectified
Activations in Convolutional Network](https://arxiv.org/abs/1505.00853).

Value

A ‘Tensor‘. Has the same type as ‘x‘.

activation_softshrink 9

Computes rrelu function

‘x if x > 0 else random(lower, upper) * x‘ or ‘x if x > 0 else x * (lower + upper) / 2‘ depending on
whether training is enabled.

activation_softshrink Softshrink

Description

Soft shrink function.

Usage

activation_softshrink(x, lower = -0.5, upper = 0.5)

Arguments

x A ‘Tensor‘. Must be one of the following types: ‘float16‘, ‘float32‘, ‘float64‘.

lower ‘float‘, lower bound for setting values to zeros.

upper ‘float‘, upper bound for setting values to zeros. Returns: A ‘Tensor‘. Has the
same type as ‘x‘.

Details

Computes soft shrink function: ‘x - lower if x < lower, x - upper if x > upper else 0‘.

Value

A ‘Tensor‘. Has the same type as ‘x‘.

Computes soft shrink function

‘x - lower if x < lower, x - upper if x > upper else 0‘.

10 activation_tanhshrink

activation_sparsemax Sparsemax

Description

Sparsemax activation function [1].

Usage

activation_sparsemax(logits, axis = -1L)

Arguments

logits Input tensor.
axis Integer, axis along which the sparsemax operation is applied.

Details

For each batch ‘i‘ and class ‘j‘ we have $$sparsemax[i, j] = max(logits[i, j] - tau(logits[i, :]), 0)$$
[1]: https://arxiv.org/abs/1602.02068

Value

Tensor, output of sparsemax transformation. Has the same type and shape as ‘logits‘. Raises:
ValueError: In case ‘dim(logits) == 1‘.

Raises

ValueError: In case ‘dim(logits) == 1‘.

activation_tanhshrink Tanhshrink

Description

Applies the element-wise function: x - tanh(x)

Usage

activation_tanhshrink(x)

Arguments

x A ‘Tensor‘. Must be one of the following types: ‘float16‘, ‘float32‘, ‘float64‘.

Value

A ‘Tensor‘. Has the same type as ‘features‘.

attention_bahdanau 11

attention_bahdanau Bahdanau Attention

Description

Implements Bahdanau-style (additive) attention

Usage

attention_bahdanau(
object,
units,
memory = NULL,
memory_sequence_length = NULL,
normalize = FALSE,
probability_fn = "softmax",
kernel_initializer = "glorot_uniform",
dtype = NULL,
name = "BahdanauAttention",
...

)

Arguments

object Model or layer object

units The depth of the query mechanism.

memory The memory to query; usually the output of an RNN encoder. This tensor should
be shaped [batch_size, max_time, ...].

memory_sequence_length

(optional): Sequence lengths for the batch entries in memory. If provided, the
memory tensor rows are masked with zeros for values past the respective se-
quence lengths.

normalize boolean. Whether to normalize the energy term.

probability_fn (optional) string, the name of function to convert the attention score to probabil-
ities. The default is softmax which is tf.nn.softmax. Other options is hardmax,
which is hardmax() within this module. Any other value will result into valida-
tion error. Default to use softmax.

kernel_initializer

(optional), the name of the initializer for the attention kernel.

dtype The data type for the query and memory layers of the attention mechanism.

name Name to use when creating ops.

... A list that contains other common arguments for layer creation.

12 attention_bahdanau_monotonic

Details

This attention has two forms. The first is Bahdanau attention, as described in: Dzmitry Bahdanau,
Kyunghyun Cho, Yoshua Bengio. "Neural Machine Translation by Jointly Learning to Align and
Translate." ICLR 2015. https://arxiv.org/abs/1409.0473 The second is the normalized form. This
form is inspired by the weight normalization article: Tim Salimans, Diederik P. Kingma. "Weight
Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks."
https://arxiv.org/abs/1602.07868 To enable the second form, construct the object with parameter
‘normalize=TRUE‘.

Value

None

attention_bahdanau_monotonic

Bahdanau Monotonic Attention

Description

Monotonic attention mechanism with Bahadanau-style energy function.

Usage

attention_bahdanau_monotonic(
object,
units,
memory = NULL,
memory_sequence_length = NULL,
normalize = FALSE,
sigmoid_noise = 0,
sigmoid_noise_seed = NULL,
score_bias_init = 0,
mode = "parallel",
kernel_initializer = "glorot_uniform",
dtype = NULL,
name = "BahdanauMonotonicAttention",
...

)

Arguments

object Model or layer object

units The depth of the query mechanism.

memory The memory to query; usually the output of an RNN encoder. This tensor should
be shaped [batch_size, max_time, ...].

attention_luong 13

memory_sequence_length

(optional): Sequence lengths for the batch entries in memory. If provided, the
memory tensor rows are masked with zeros for values past the respective se-
quence lengths.

normalize Python boolean. Whether to normalize the energy term.

sigmoid_noise Standard deviation of pre-sigmoid noise. See the docstring for ‘_monotonic_probability_fn‘
for more information.

sigmoid_noise_seed

(optional) Random seed for pre-sigmoid noise.
score_bias_init

Initial value for score bias scalar. It’s recommended to initialize this to a negative
value when the length of the memory is large.

mode How to compute the attention distribution. Must be one of ’recursive’, ’paral-
lel’, or ’hard’. See the docstring for tfa.seq2seq.monotonic_attention for more
information.

kernel_initializer

(optional), the name of the initializer for the attention kernel.

dtype The data type for the query and memory layers of the attention mechanism.

name Name to use when creating ops.

... A list that contains other common arguments for layer creation.

Details

This type of attention enforces a monotonic constraint on the attention distributions; that is once the
model attends to a given point in the memory it can’t attend to any prior points at subsequence output
timesteps. It achieves this by using the _monotonic_probability_fn instead of softmax to construct
its attention distributions. Since the attention scores are passed through a sigmoid, a learnable scalar
bias parameter is applied after the score function and before the sigmoid. Otherwise, it is equivalent
to BahdanauAttention. This approach is proposed in

Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck, "Online and Linear-
Time Attention by Enforcing Monotonic Alignments." ICML 2017. https://arxiv.org/abs/1704.00784

Value

None

attention_luong Implements Luong-style (multiplicative) attention scoring.

Description

Implements Luong-style (multiplicative) attention scoring.

14 attention_luong

Usage

attention_luong(
object,
units,
memory = NULL,
memory_sequence_length = NULL,
scale = FALSE,
probability_fn = "softmax",
dtype = NULL,
name = "LuongAttention",
...

)

Arguments

object Model or layer object

units The depth of the attention mechanism.

memory The memory to query; usually the output of an RNN encoder. This tensor should
be shaped [batch_size, max_time, ...].

memory_sequence_length

(optional): Sequence lengths for the batch entries in memory. If provided, the
memory tensor rows are masked with zeros for values past the respective se-
quence lengths.

scale boolean. Whether to scale the energy term.

probability_fn (optional) string, the name of function to convert the attention score to probabil-
ities. The default is softmax which is tf.nn.softmax. Other options is hardmax,
which is hardmax() within this module. Any other value will result intovalida-
tion error. Default to use softmax.

dtype The data type for the memory layer of the attention mechanism.

name Name to use when creating ops.

... A list that contains other common arguments for layer creation.

Details

This attention has two forms. The first is standard Luong attention, as described in: Minh-Thang
Luong, Hieu Pham, Christopher D. Manning. Effective Approaches to Attention-based Neural
Machine Translation. EMNLP 2015. The second is the scaled form inspired partly by the normal-
ized form of Bahdanau attention. To enable the second form, construct the object with parameter
‘scale=TRUE‘.

Value

None

attention_luong_monotonic 15

attention_luong_monotonic

Monotonic attention mechanism with Luong-style energy function.

Description

Monotonic attention mechanism with Luong-style energy function.

Usage

attention_luong_monotonic(
object,
units,
memory = NULL,
memory_sequence_length = NULL,
scale = FALSE,
sigmoid_noise = 0,
sigmoid_noise_seed = NULL,
score_bias_init = 0,
mode = "parallel",
dtype = NULL,
name = "LuongMonotonicAttention",
...

)

Arguments

object Model or layer object
units The depth of the query mechanism.
memory The memory to query; usually the output of an RNN encoder. This tensor should

be shaped [batch_size, max_time, ...].
memory_sequence_length

(optional): Sequence lengths for the batch entries in memory. If provided, the
memory tensor rows are masked with zeros for values past the respective se-
quence lengths.

scale boolean. Whether to scale the energy term.
sigmoid_noise Standard deviation of pre-sigmoid noise. See the docstring for ‘_monotonic_probability_fn‘

for more information.
sigmoid_noise_seed

(optional) Random seed for pre-sigmoid noise.
score_bias_init

Initial value for score bias scalar. It’s recommended to initialize this to a negative
value when the length of the memory is large.

mode How to compute the attention distribution. Must be one of ’recursive’, ’paral-
lel’, or ’hard’. See the docstring for tfa.seq2seq.monotonic_attention for more
information.

16 attention_monotonic

dtype The data type for the query and memory layers of the attention mechanism.

name Name to use when creating ops.

... A list that contains other common arguments for layer creation.

Details

This type of attention enforces a monotonic constraint on the attention distributions; that is once the
model attends to a given point in the memory it can’t attend to any prior points at subsequence output
timesteps. It achieves this by using the _monotonic_probability_fn instead of softmax to construct
its attention distributions. Otherwise, it is equivalent to LuongAttention. This approach is proposed
in [Colin Raffel, Minh-Thang Luong, Peter J. Liu, Ron J. Weiss, Douglas Eck, "Online and Linear-
Time Attention by Enforcing Monotonic Alignments." ICML 2017.](https://arxiv.org/abs/1704.00784)

Value

None

attention_monotonic Monotonic attention

Description

Compute monotonic attention distribution from choosing probabilities.

Usage

attention_monotonic(p_choose_i, previous_attention, mode)

Arguments

p_choose_i Probability of choosing input sequence/memory element i. Should be of shape
(batch_size, input_sequence_length), and should all be in the range [0, 1].

previous_attention

The attention distribution from the previous output timestep. Should be of
shape (batch_size, input_sequence_length). For the first output timestep, pree-
vious_attention[n] should be [1, 0, 0, ..., 0] for all n in [0, ... batch_size - 1].

mode How to compute the attention distribution. Must be one of ’recursive’, ’parallel’,
or ’hard’. ’recursive’ uses tf$scan to recursively compute the distribution. This
is slowest but is exact, general, and does not suffer from numerical instabilities.
’parallel’ uses parallelized cumulative-sum and cumulative-product operations
to compute a closed-form solution to the recurrence relation defining the atten-
tion distribution. This makes it more efficient than ’recursive’, but it requires
numerical checks which make the distribution non-exact. This can be a problem
in particular when input_sequence_length is long and/or p_choose_i has entries
very close to 0 or 1. * ’hard’ requires that the probabilities in p_choose_i are all
either 0 or 1, and subsequently uses a more efficient and exact solution.

attention_wrapper 17

Details

Monotonic attention implies that the input sequence is processed in an explicitly left-to-right manner
when generating the output sequence. In addition, once an input sequence element is attended to
at a given output timestep, elements occurring before it cannot be attended to at subsequent output
timesteps. This function generates attention distributions according to these assumptions. For more
information, see ‘Online and Linear-Time Attention by Enforcing Monotonic Alignments‘.

Value

A tensor of shape (batch_size, input_sequence_length) representing the attention distributions for
each sequence in the batch.

Raises

ValueError: mode is not one of ’recursive’, ’parallel’, ’hard’.

attention_wrapper Attention Wrapper

Description

Attention Wrapper

Usage

attention_wrapper(
object,
cell,
attention_mechanism,
attention_layer_size = NULL,
alignment_history = FALSE,
cell_input_fn = NULL,
output_attention = TRUE,
initial_cell_state = NULL,
name = NULL,
attention_layer = NULL,
attention_fn = NULL,
...

)

Arguments

object Model or layer object

cell An instance of RNNCell.
attention_mechanism

A list of AttentionMechanism instances or a single instance.

18 attention_wrapper

attention_layer_size

A list of Python integers or a single Python integer, the depth of the attention
(output) layer(s). If ‘NULL‘ (default), use the context as attention at each time
step. Otherwise, feed the context and cell output into the attention layer to
generate attention at each time step. If attention_mechanism is a list, atten-
tion_layer_size must be a list of the same length. If attention_layer is set, this
must be ‘NULL‘. If attention_fn is set, it must guaranteed that the outputs of
‘attention_fn‘ also meet the above requirements.

alignment_history

Python boolean, whether to store alignment history from all time steps in the
final output state (currently stored as a time major TensorArray on which you
must call stack()).

cell_input_fn (optional) A callable. The default is: lambda inputs, attention: tf$concat(list(inputs,
attention), -1).

output_attention

Python bool. If True (default), the output at each time step is the attention value.
This is the behavior of Luong-style attention mechanisms. If FALSE, the output
at each time step is the output of cell. This is the behavior of Bhadanau-style
attention mechanisms. In both cases, the attention tensor is propagated to the
next time step via the state and is used there. This flag only controls whether the
attention mechanism is propagated up to the next cell in an RNN stack or to the
top RNN output.

initial_cell_state

The initial state value to use for the cell when the user calls get_initial_state().
Note that if this value is provided now, and the user uses a batch_size argument
of get_initial_state which does not match the batch size of initial_cell_state,
proper behavior is not guaranteed.

name Name to use when creating ops.

attention_layer

A list of tf$keras$layers$Layer instances or a single tf$keras$layers$Layer in-
stance taking the context and cell output as inputs to generate attention at each
time step. If ‘NULL‘ (default), use the context as attention at each time step. If
attention_mechanism is a list, attention_layer must be a list of the same length.
If attention_layers_size is set, this must be ‘NULL‘.

attention_fn An optional callable function that allows users to provide their own customized
attention function, which takes input (attention_mechanism, cell_output, atten-
tion_state, attention_layer) and outputs (attention, alignments, next_attention_state).
If provided, the attention_layer_size should be the size of the outputs of atten-
tion_fn.

... Other keyword arguments to pass

Value

None

attention_wrapper_state 19

Note

If you are using the ‘decoder_beam_search‘ with a cell wrapped in ‘AttentionWrapper‘, then you
must ensure that: - The encoder output has been tiled to ‘beam_width‘ via ‘tile_batch‘ (NOT
‘tf$tile‘). - The ‘batch_size‘ argument passed to the ‘get_initial_state‘ method of this wrapper
is equal to ‘true_batch_size * beam_width‘. - The initial state created with ‘get_initial_state‘ above
contains a ‘cell_state‘ value containing properly tiled final state from the encoder.

attention_wrapper_state

Attention Wrapper State

Description

‘namedlist‘ storing the state of a ‘attention_wrapper‘.

Usage

attention_wrapper_state(
object,
cell_state,
attention,
alignments,
alignment_history,
attention_state

)

Arguments

object Model or layer object

cell_state The state of the wrapped RNNCell at the previous time step.

attention The attention emitted at the previous time step.

alignments A single or tuple of Tensor(s) containing the alignments emitted at the previous
time step for each attention mechanism.

alignment_history

(if enabled) a single or tuple of TensorArray(s) containing alignment matrices
from all time steps for each attention mechanism. Call stack() on each to convert
to a Tensor.

attention_state

A single or tuple of nested objects containing attention mechanism state for each
attention mechanism. The objects may contain Tensors or TensorArrays.

Value

None

20 callback_average_model_checkpoint

callback_average_model_checkpoint

Average Model Checkpoint

Description

Save the model after every epoch.

Usage

callback_average_model_checkpoint(
filepath,
update_weights,
monitor = "val_loss",
verbose = 0,
save_best_only = FALSE,
save_weights_only = FALSE,
mode = "auto",
save_freq = "epoch",
...

)

Arguments

filepath string, path to save the model file.
update_weights bool, wheteher to update weights or not
monitor quantity to monitor.
verbose verbosity mode, 0 or 1.
save_best_only if ‘save_best_only=TRUE‘, the latest best model according to the quantity mon-

itored will not be overwritten. If ‘filepath‘ doesn’t contain formatting options
like ‘epoch‘ then ‘filepath‘ will be overwritten by each new better model.

save_weights_only

if TRUE, then only the model’s weights will be saved (‘model$save_weights(filepath)‘),
else the full model is saved (‘model$save(filepath)‘).

mode one of auto, min, max. If ‘save_best_only=TRUE‘, the decision to overwrite the
current save file is made based on either the maximization or the minimization
of the monitored quantity. For ‘val_acc‘, this should be ‘max‘, for ‘val_loss‘
this should be ‘min‘, etc. In ‘auto‘ mode, the direction is automatically inferred
from the name of the monitored quantity.

save_freq ‘’epoch’‘ or integer. When using ‘’epoch’‘, the callback saves the model after
each epoch. When using integer, the callback saves the model at end of a batch
at which this many samples have been seen since last saving. Note that if the
saving isn’t aligned to epochs, the monitored metric may potentially be less
reliable (it could reflect as little as 1 batch, since the metrics get reset every
epoch). Defaults to ‘’epoch’‘

... Additional arguments for backwards compatibility. Possible key is ‘period‘.

callback_time_stopping 21

Details

The callback that should be used with optimizers that extend AverageWrapper, i.e., MovingAverage
and StochasticAverage optimizers. It saves and, optionally, assigns the averaged weights.

Value

None

For example

if ‘filepath‘ is ‘weights.epoch:02d-val_loss:.2f.hdf5‘,: then the model checkpoints will be saved
with the epoch number and the validation loss in the filename.

callback_time_stopping

Time Stopping

Description

Time Stopping

Usage

callback_time_stopping(seconds = 86400, verbose = 0)

Arguments

seconds maximum amount of time before stopping. Defaults to 86400 (1 day).

verbose verbosity mode. Defaults to 0.

Details

Stop training when a specified amount of time has passed.

Value

None

Examples

Not run:
model %>% fit(
x_train, y_train,
batch_size = 128,
epochs = 4,
validation_split = 0.2,
verbose = 0,
callbacks = callback_time_stopping(seconds = 6, verbose = 1)

22 callback_tqdm_progress_bar

)

End(Not run)

callback_tqdm_progress_bar

TQDM Progress Bar

Description

TQDM Progress Bar

Usage

callback_tqdm_progress_bar(
metrics_separator = " - ",
overall_bar_format = NULL,
epoch_bar_format = "{n_fmt}/{total_fmt}{bar} ETA: {remaining}s - {desc}",
update_per_second = 10,
leave_epoch_progress = TRUE,
leave_overall_progress = TRUE,
show_epoch_progress = TRUE,
show_overall_progress = TRUE

)

Arguments

metrics_separator

(string) Custom separator between metrics. Defaults to ’ - ’
overall_bar_format

(string format) Custom bar format for overall (outer) progress bar, see https://github.com/tqdm/tqdm#parameters
for more detail. By default: ’l_barbar n_fmt/total_fmt ETA: remainings, rate_fmtpostfix’

epoch_bar_format

(string format) Custom bar format for epoch (inner) progress bar, see https://github.com/tqdm/tqdm#parameters
for more detail.

update_per_second

(int) Maximum number of updates in the epochs bar per second, this is to prevent
small batches from slowing down training. Defaults to 10.

leave_epoch_progress

(bool) TRUE to leave epoch progress bars
leave_overall_progress

(bool) TRUE to leave overall progress bar
show_epoch_progress

(bool) FALSE to hide epoch progress bars
show_overall_progress

(bool) FALSE to hide overall progress bar

crf_binary_score 23

Details

TQDM Progress Bar for Tensorflow Keras.

Value

None

Examples

Not run:
model %>% fit(
x_train, y_train,
batch_size = 128,
epochs = 4,
validation_split = 0.2,
verbose = 0,
callbacks = callback_tqdm_progress_bar()
)

End(Not run)

crf_binary_score CRF binary score

Description

Computes the binary scores of tag sequences.

Usage

crf_binary_score(tag_indices, sequence_lengths, transition_params)

Arguments

tag_indices A [batch_size, max_seq_len] matrix of tag indices.
sequence_lengths

A [batch_size] vector of true sequence lengths.
transition_params

A [num_tags, num_tags] matrix of binary potentials.

Value

binary_scores: A [batch_size] vector of binary scores.

24 crf_decode_backward

crf_decode CRF decode

Description

Decode the highest scoring sequence of tags.

Usage

crf_decode(potentials, transition_params, sequence_length)

Arguments

potentials A [batch_size, max_seq_len, num_tags] tensor of unary potentials.
transition_params

A [num_tags, num_tags] matrix of binary potentials.
sequence_length

A [batch_size] vector of true sequence lengths.

Value

decode_tags: A [batch_size, max_seq_len] matrix, with dtype ‘tf.int32‘. Contains the highest scor-
ing tag indices. best_score: A [batch_size] vector, containing the score of ‘decode_tags‘.

crf_decode_backward CRF decode backward

Description

Computes backward decoding in a linear-chain CRF.

Usage

crf_decode_backward(inputs, state)

Arguments

inputs A [batch_size, num_tags] matrix of backpointer of next step (in time order).

state A [batch_size, 1] matrix of tag index of next step.

Value

new_tags: A [batch_size, num_tags] tensor containing the new tag indices.

crf_decode_forward 25

crf_decode_forward CRF decode forward

Description

Computes forward decoding in a linear-chain CRF.

Usage

crf_decode_forward(inputs, state, transition_params, sequence_lengths)

Arguments

inputs A [batch_size, num_tags] matrix of unary potentials.
state A [batch_size, num_tags] matrix containing the previous step’s score values.
transition_params

A [num_tags, num_tags] matrix of binary potentials.
sequence_lengths

A [batch_size] vector of true sequence lengths.

Value

backpointers: A [batch_size, num_tags] matrix of backpointers. new_state: A [batch_size, num_tags]
matrix of new score values.

crf_forward CRF forward

Description

Computes the alpha values in a linear-chain CRF.

Usage

crf_forward(inputs, state, transition_params, sequence_lengths)

Arguments

inputs A [batch_size, num_tags] matrix of unary potentials.
state A [batch_size, num_tags] matrix containing the previous alpha values.
transition_params

A [num_tags, num_tags] matrix of binary potentials. This matrix is expanded
into a [1, num_tags, num_tags] in preparation for the broadcast summation oc-
curring within the cell.

sequence_lengths

A [batch_size] vector of true sequence lengths.

26 crf_log_likelihood

Details

See http://www.cs.columbia.edu/~mcollins/fb.pdf for reference.

Value

new_alphas: A [batch_size, num_tags] matrix containing the new alpha values.

crf_log_likelihood CRF log likelihood

Description

Computes the log-likelihood of tag sequences in a CRF.

Usage

crf_log_likelihood(
inputs,
tag_indices,
sequence_lengths,
transition_params = NULL

)

Arguments

inputs A [batch_size, max_seq_len, num_tags] tensor of unary potentials to use as in-
put to the CRF layer.

tag_indices A [batch_size, max_seq_len] matrix of tag indices for which we compute the
log-likelihood.

sequence_lengths

A [batch_size] vector of true sequence lengths.

transition_params

A [num_tags, num_tags] transition matrix, if available.

Value

log_likelihood: A [batch_size] Tensor containing the log-likelihood of each example, given the
sequence of tag indices. transition_params: A [num_tags, num_tags] transition matrix. This is
either provided by the caller or created in this function.

crf_log_norm 27

crf_log_norm CRF log norm

Description

Computes the normalization for a CRF.

Usage

crf_log_norm(inputs, sequence_lengths, transition_params)

Arguments

inputs A [batch_size, max_seq_len, num_tags] tensor of unary potentials to use as in-
put to the CRF layer.

sequence_lengths

A [batch_size] vector of true sequence lengths.

transition_params

A [num_tags, num_tags] transition matrix.

Value

log_norm: A [batch_size] vector of normalizers for a CRF.

crf_multitag_sequence_score

CRF multitag sequence score

Description

Computes the unnormalized score of all tag sequences matching

Usage

crf_multitag_sequence_score(
inputs,
tag_bitmap,
sequence_lengths,
transition_params

)

28 crf_sequence_score

Arguments

inputs A [batch_size, max_seq_len, num_tags] tensor of unary potentials to use as in-
put to the CRF layer.

tag_bitmap A [batch_size, max_seq_len, num_tags] boolean tensor representing all active
tags at each index for which to calculate the unnormalized score.

sequence_lengths

A [batch_size] vector of true sequence lengths.
transition_params

A [num_tags, num_tags] transition matrix.

Details

tag_bitmap. tag_bitmap enables more than one tag to be considered correct at each time step. This
is useful when an observed output at a given time step is consistent with more than one tag, and
thus the log likelihood of that observation must take into account all possible consistent tags. Using
one-hot vectors in tag_bitmap gives results identical to crf_sequence_score.

Value

sequence_scores: A [batch_size] vector of unnormalized sequence scores.

crf_sequence_score CRF sequence score

Description

Computes the unnormalized score for a tag sequence.

Usage

crf_sequence_score(inputs, tag_indices, sequence_lengths, transition_params)

Arguments

inputs A [batch_size, max_seq_len, num_tags] tensor of unary potentials to use as in-
put to the CRF layer.

tag_indices A [batch_size, max_seq_len] matrix of tag indices for which we compute the
unnormalized score.

sequence_lengths

A [batch_size] vector of true sequence lengths.
transition_params

A [num_tags, num_tags] transition matrix. Returns:

Value

sequence_scores: A [batch_size] vector of unnormalized sequence scores.

crf_unary_score 29

crf_unary_score CRF unary score

Description

Computes the unary scores of tag sequences.

Usage

crf_unary_score(tag_indices, sequence_lengths, inputs)

Arguments

tag_indices A [batch_size, max_seq_len] matrix of tag indices.
sequence_lengths

A [batch_size] vector of true sequence lengths.
inputs A [batch_size, max_seq_len, num_tags] tensor of unary potentials.

Value

unary_scores: A [batch_size] vector of unary scores.

decoder An RNN Decoder abstract interface object.

Description

An RNN Decoder abstract interface object.

Usage

decoder(...)

Arguments

... arguments to pass

Details

- inputs: (structure of) tensors and TensorArrays that is passed as input to the RNNCell composing
the decoder, at each time step. - state: (structure of) tensors and TensorArrays that is passed to the
RNNCell instance as the state. - finished: boolean tensor telling whether each sequence in the batch
is finished. - training: boolean whether it should behave in training mode or in inference mode. -
outputs: Instance of BasicDecoderOutput. Result of the decoding, at each time step.

Value

None

30 decoder_basic

decoder_base Base Decoder

Description

An RNN Decoder that is based on a Keras layer.

Usage

decoder_base(object, cell, sampler, output_layer = NULL, ...)

Arguments

object Model or layer object
cell An RNNCell instance.
sampler A Sampler instance.
output_layer (Optional) An instance of tf$layers$Layer, i.e., tf$layers$Dense. Optional layer

to apply to the RNN output prior to storing the result or sampling.
... Other keyword arguments for layer creation.

Value

None

decoder_basic Basic Decoder

Description

Basic Decoder

Usage

decoder_basic(object, cell, sampler, output_layer = NULL, ...)

Arguments

object Model or layer object
cell An RNNCell instance.
sampler A Sampler instance.
output_layer (Optional) An instance of tf$layers$Layer, i.e., tf$layers$Dense. Optional layer

to apply to the RNN output prior to storing the result or sampling.
... Other keyword arguments for layer creation.

Value

None

decoder_basic_output 31

decoder_basic_output Basic decoder output

Description

Basic decoder output

Usage

decoder_basic_output(rnn_output, sample_id)

Arguments

rnn_output the output of RNN cell

sample_id the ‘id‘ of the sample

Value

None

decoder_beam_search BeamSearch sampling decoder

Description

BeamSearch sampling decoder

Usage

decoder_beam_search(
object,
cell,
beam_width,
embedding_fn = NULL,
output_layer = NULL,
length_penalty_weight = 0,
coverage_penalty_weight = 0,
reorder_tensor_arrays = TRUE,
...

)

32 decoder_beam_search_output

Arguments

object Model or layer object

cell An RNNCell instance.

beam_width integer, the number of beams.

embedding_fn A callable that takes a vector tensor of ids (argmax ids).

output_layer (Optional) An instance of tf.keras.layers.Layer, i.e., tf$keras$layers$Dense. Op-
tional layer to apply to the RNN output prior to storing the result or sampling.

length_penalty_weight

Float weight to penalize length. Disabled with 0.0.
coverage_penalty_weight

Float weight to penalize the coverage of source sentence. Disabled with 0.0.
reorder_tensor_arrays

If ‘TRUE‘, TensorArrays’ elements within the cell state will be reordered ac-
cording to the beam search path. If the TensorArray can be reordered, the
stacked form will be returned. Otherwise, the TensorArray will be returned
as is. Set this flag to False if the cell state contains TensorArrays that are not
amenable to reordering.

... A list, other keyword arguments for initialization.

Value

None

Note

If you are using the ‘BeamSearchDecoder‘ with a cell wrapped in ‘AttentionWrapper‘, then you
must ensure that: - The encoder output has been tiled to ‘beam_width‘ via ‘tile_batch()‘ (NOT
‘tf$tile‘). - The ‘batch_size‘ argument passed to the ‘get_initial_state‘ method of this wrapper is
equal to ‘true_batch_size * beam_width‘. - The initial state created with ‘get_initial_state‘ above
contains a ‘cell_state‘ value containing properly tiled final state from the encoder.

decoder_beam_search_output

Beam Search Decoder Output

Description

Beam Search Decoder Output

Usage

decoder_beam_search_output(scores, predicted_ids, parent_ids)

decoder_beam_search_state 33

Arguments

scores calculate the scores for each beam

predicted_ids The final prediction. A tensor of shape ‘[batch_size, T, beam_width]‘ (or ‘[T,
batch_size, beam_width]‘ if ‘output_time_major‘ is ‘TRUE‘). Beams are or-
dered from best to worst.

parent_ids The parent ids of shape ‘[max_time, batch_size, beam_width]‘.

Value

None

decoder_beam_search_state

Beam Search Decoder State

Description

Beam Search Decoder State

Usage

decoder_beam_search_state(
cell_state,
log_probs,
finished,
lengths,
accumulated_attention_probs

)

Arguments

cell_state cell_state

log_probs log_probs

finished finished

lengths lengths
accumulated_attention_probs

accumulated_attention_probs

Value

None

34 decode_dynamic

decoder_final_beam_search_output

Final Beam Search Decoder Output

Description

Final outputs returned by the beam search after all decoding is finished.

Usage

decoder_final_beam_search_output(predicted_ids, beam_search_decoder_output)

Arguments

predicted_ids The final prediction. A tensor of shape ‘[batch_size, T, beam_width]‘ (or ‘[T,
batch_size, beam_width]‘ if ‘output_time_major‘ is TRUE). Beams are ordered
from best to worst.

beam_search_decoder_output

An instance of ‘BeamSearchDecoderOutput‘ that describes the state of the beam
search.

Value

None

decode_dynamic Dynamic decode

Description

Perform dynamic decoding with ‘decoder‘.

Usage

decode_dynamic(
decoder,
output_time_major = FALSE,
impute_finished = FALSE,
maximum_iterations = NULL,
parallel_iterations = 32L,
swap_memory = FALSE,
training = NULL,
scope = NULL,
...

)

extend_with_decoupled_weight_decay 35

Arguments

decoder A ‘Decoder‘ instance.
output_time_major

boolean. Default: ‘FALSE‘ (batch major). If ‘TRUE‘, outputs are returned as
time major tensors (this mode is faster). Otherwise, outputs are returned as batch
major tensors (this adds extra time to the computation).

impute_finished

boolean. If ‘TRUE‘, then states for batch entries which are marked as finished
get copied through and the corresponding outputs get zeroed out. This causes
some slowdown at each time step, but ensures that the final state and outputs
have the correct values and that backprop ignores time steps that were marked
as finished.

maximum_iterations

‘int32‘ scalar, maximum allowed number of decoding steps. Default is ‘NULL‘
(decode until the decoder is fully done).

parallel_iterations

Argument passed to ‘tf$while_loop‘.

swap_memory Argument passed to ‘tf$while_loop‘.

training boolean. Indicates whether the layer should behave in training mode or in infer-
ence mode. Only relevant when ‘dropout‘ or ‘recurrent_dropout‘ is used.

scope Optional variable scope to use.

... A list, other keyword arguments for dynamic_decode. It might contain ar-
guments for ‘BaseDecoder‘ to initialize, which takes all tensor inputs during
‘call()‘.

Details

Calls ‘initialize()‘ once and ‘step()‘ repeatedly on the Decoder object.

Value

‘(final_outputs, final_state, final_sequence_lengths)‘.

Raises

TypeError: if ‘decoder‘ is not an instance of ‘Decoder‘. ValueError: if ‘maximum_iterations‘ is
provided but is not a scalar.

extend_with_decoupled_weight_decay

Factory function returning an optimizer class with decoupled weight
decay

Description

Factory function returning an optimizer class with decoupled weight decay

36 gather_tree

Usage

extend_with_decoupled_weight_decay(base_optimizer)

Arguments

base_optimizer An optimizer class that inherits from tf$optimizers$Optimizer.

Details

The API of the new optimizer class slightly differs from the API of the base optimizer:

- The first argument to the constructor is the weight decay rate. - minimize and apply_gradients
accept the optional keyword argument decay_var_list, which specifies the variables that should be
decayed. If NULLs, all variables that are optimized are decayed.

Value

A new optimizer class that inherits from DecoupledWeightDecayExtension and base_optimizer.

Note

Note: this extension decays weights BEFORE applying the update based on the gradient, i.e. this
extension only has the desired behaviour for optimizers which do not depend on the value of ’var’
in the update step! Note: when applying a decay to the learning rate, be sure to manually apply the
decay to the ‘weight_decay‘ as well.

Examples

Not run:

MyAdamW is a new class
MyAdamW = extend_with_decoupled_weight_decay(tf$keras$optimizers$Adam)
Create a MyAdamW object
optimizer = MyAdamW(weight_decay = 0.001, learning_rate = 0.001)
update var1, var2 but only decay var1
optimizer$minimize(loss, var_list = list(var1, var2), decay_variables = list(var1))

End(Not run)

gather_tree Gather tree

Description

Gather tree

gather_tree_from_array 37

Usage

gather_tree(step_ids, parent_ids, max_sequence_lengths, end_token)

Arguments

step_ids requires the step id

parent_ids The parent ids of shape ‘[max_time, batch_size, beam_width]‘.
max_sequence_lengths

get max_sequence_length across all beams for each batch.

end_token ‘int32‘ scalar, the token that marks end of decoding.

Value

None

gather_tree_from_array

Gather tree from array

Description

Calculates the full beams for ‘TensorArray‘s.

Usage

gather_tree_from_array(t, parent_ids, sequence_length)

Arguments

t A stacked ‘TensorArray‘ of size ‘max_time‘ that contains ‘Tensor‘s of shape
‘[batch_size, beam_width, s]‘ or ‘[batch_size * beam_width, s]‘ where ‘s‘ is the
depth shape.

parent_ids The parent ids of shape ‘[max_time, batch_size, beam_width]‘.
sequence_length

The sequence length of shape ‘[batch_size, beam_width]‘.

Value

A ‘Tensor‘ which is a stacked ‘TensorArray‘ of the same size and type as ‘t‘ and where beams are
sorted in each ‘Tensor‘ according to ‘parent_ids‘.

38 img_adjust_hsv_in_yiq

hardmax Hardmax

Description

Returns batched one-hot vectors.

Usage

hardmax(logits, name = NULL)

Arguments

logits A batch tensor of logit values.

name Name to use when creating ops.

Details

The depth index containing the ‘1‘ is that of the maximum logit value.

Value

A batched one-hot tensor.

img_adjust_hsv_in_yiq Adjust hsv in yiq

Description

Adjust hue, saturation, value of an RGB image in YIQ color space.

Usage

img_adjust_hsv_in_yiq(
image,
delta_hue = 0,
scale_saturation = 1,
scale_value = 1,
name = NULL

)

img_angles_to_projective_transforms 39

Arguments

image RGB image or images. Size of the last dimension must be 3.
delta_hue float, the hue rotation amount, in radians.
scale_saturation

float, factor to multiply the saturation by.
scale_value float, factor to multiply the value by.
name A name for this operation (optional).

Details

This is a convenience method that converts an RGB image to float representation, converts it to YIQ,
rotates the color around the Y channel by delta_hue in radians, scales the chrominance channels (I,
Q) by scale_saturation, scales all channels (Y, I, Q) by scale_value, converts back to RGB, and then
back to the original data type. ‘image‘ is an RGB image. The image hue is adjusted by converting
the image to YIQ, rotating around the luminance channel (Y) by ‘delta_hue‘ in radians, multiplying
the chrominance channels (I, Q) by ‘scale_saturation‘, and multiplying all channels (Y, I, Q) by
‘scale_value‘. The image is then converted back to RGB.

Value

Adjusted image(s), same shape and dtype as ‘image‘.

img_angles_to_projective_transforms

Angles to projective transforms

Description

Returns projective transform(s) for the given angle(s).

Usage

img_angles_to_projective_transforms(
angles,
image_height,
image_width,
name = NULL

)

Arguments

angles A scalar angle to rotate all images by, or (for batches of images) a vector with
an angle to rotate each image in the batch. The rank must be statically known
(the shape is not ‘TensorShape(NULL)‘.

image_height Height of the image(s) to be transformed.
image_width Width of the image(s) to be transformed.
name name of the op.

40 img_compose_transforms

Value

A tensor of shape (num_images, 8). Projective transforms which can be given to ‘transform‘ op.

img_blend Blend

Description

Blend image1 and image2 using ’factor’.

Usage

img_blend(image1, image2, factor)

Arguments

image1 An image Tensor of shape (num_rows, num_columns, num_channels) (HWC),
or (num_rows, num_columns) (HW), or (num_channels, num_rows, num_columns).

image2 An image Tensor of shape (num_rows, num_columns, num_channels) (HWC),
or (num_rows, num_columns) (HW), or (num_channels, num_rows, num_columns).

factor A floating point value or Tensor of type tf.float32 above 0.0.

Details

Factor can be above 0.0. A value of 0.0 means only image1 is used. A value of 1.0 means only
image2 is used. A value between 0.0 and 1.0 means we linearly interpolate the pixel values between
the two images. A value greater than 1.0 "extrapolates" the difference between the two pixel values,
and we clip the results to values between 0 and 255.

Value

A blended image Tensor of tf$float32.

img_compose_transforms

Compose transforms

Description

Composes the transforms tensors.

Usage

img_compose_transforms(transforms, name = NULL)

img_connected_components 41

Arguments

transforms List of image projective transforms to be composed. Each transform is length 8
(single transform) or shape (N, 8) (batched transforms). The shapes of all inputs
must be equal, and at least one input must be given.

name The name for the op.

Value

A composed transform tensor. When passed to ‘transform‘ op, equivalent to applying each of the
given transforms to the image in order.

img_connected_components

Connected components

Description

Labels the connected components in a batch of images.

Usage

img_connected_components(images, name = NULL)

Arguments

images A 2D (H, W) or 3D (N, H, W) Tensor of image (integer, floating point and
boolean types are supported).

name The name of the op.

Details

A component is a set of pixels in a single input image, which are all adjacent and all have the same
non-zero value. The components using a squared connectivity of one (all equal entries are joined
with their neighbors above,below, left, and right). Components across all images have consecutive
ids 1 through n. Components are labeled according to the first pixel of the component appearing in
row-major order (lexicographic order by image_index_in_batch, row, col). Zero entries all have an
output id of 0. This op is equivalent with ‘scipy.ndimage.measurements.label‘ on a 2D array with
the default structuring element (which is the connectivity used here).

Value

Components with the same shape as ‘images‘. entries that evaluate to FALSE (e.g. 0/0.0f, FALSE)
in ‘images‘ have value 0, and all other entries map to a component id > 0.

Raises

TypeError: if ‘images‘ is not 2D or 3D.

42 img_cutout

img_cutout Cutout

Description

Apply cutout (https://arxiv.org/abs/1708.04552) to images.

Usage

img_cutout(
images,
mask_size,
offset = list(0, 0),
constant_values = 0,
data_format = "channels_last"

)

Arguments

images A tensor of shape (batch_size, height, width, channels) (NHWC), (batch_size,
channels, height, width)(NCHW).

mask_size Specifies how big the zero mask that will be generated is that is applied to the im-
ages. The mask will be of size (mask_height x mask_width). Note: mask_size
should be divisible by 2.

offset A list of (height, width) or (batch_size, 2)
constant_values

What pixel value to fill in the images in the area that has the cutout mask applied
to it.

data_format A string, one of ‘channels_last‘ (default) or ‘channels_first‘. The ordering of
the dimensions in the inputs. ‘channels_last‘ corresponds to inputs with shape
‘(batch_size, ..., channels)‘ while ‘channels_first‘ corresponds to inputs with
shape ‘(batch_size, channels, ...)‘.

Details

This operation applies a (mask_height x mask_width) mask of zeros to a location within ‘img‘
specified by the offset. The pixel values filled in will be of the value ‘replace‘. The located where
the mask will be applied is randomly chosen uniformly over the whole images.

Value

An image Tensor.

Raises

InvalidArgumentError: if mask_size can’t be divisible by 2.

img_dense_image_warp 43

img_dense_image_warp Dense image warp

Description

Image warping using per-pixel flow vectors.

Usage

img_dense_image_warp(image, flow, name = NULL)

Arguments

image 4-D float Tensor with shape [batch, height, width, channels].

flow A 4-D float Tensor with shape [batch, height, width, 2].

name A name for the operation (optional).

Details

Apply a non-linear warp to the image, where the warp is specified by a dense flow field of offset
vectors that define the correspondences of pixel values in the output image back to locations in the
source image. Specifically, the pixel value at output[b, j, i, c] is images[b, j - flow[b, j, i, 0], i -
flow[b, j, i, 1], c]. The locations specified by this formula do not necessarily map to an int index.
Therefore, the pixel value is obtained by bilinear interpolation of the 4 nearest pixels around (b, j -
flow[b, j, i, 0], i - flow[b, j, i, 1]). For locations outside of the image, we use the nearest pixel values
at the image boundary.

Value

A 4-D float ‘Tensor‘ with shape‘[batch, height, width, channels]‘ and same type as input image.

Raises

ValueError: if height < 2 or width < 2 or the inputs have the wrong number of dimensions.

Note

Note that image and flow can be of type tf$half, tf$float32, or tf$float64, and do not necessarily
have to be the same type.

Examples

Not run:
flow_shape = list(1L, as.integer(input_img$shape[[2]]), as.integer(input_img$shape[[3]]), 2L)
init_flows = tf$random$normal(flow_shape) * 2.0
dense_img_warp = img_dense_image_warp(input_img, init_flows)
dense_img_warp = tf$squeeze(dense_img_warp, 0)

44 img_equalize

End(Not run)

img_equalize Equalize

Description

Equalize image(s)

Usage

img_equalize(image, data_format = "channels_last", name = NULL)

Arguments

image A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC),
or (num_images, num_channels, num_rows, num_columns) (NCHW), or (num_rows,
num_columns, num_channels) (HWC), or (num_channels, num_rows, num_columns)
(CHW), or (num_rows, num_columns) (HW). The rank must be statically known
(the shape is not TensorShape(None)).

data_format Either ’channels_first’ or ’channels_last’

name The name of the op. Returns: Image(s) with the same type and shape as ‘im-
ages‘, equalized.

Value

Image(s) with the same type and shape as ‘images‘, equalized.

Examples

Not run:
img_equalize(img)

End(Not run)

img_euclidean_dist_transform 45

img_euclidean_dist_transform

Euclidean dist transform

Description

Applies euclidean distance transform(s) to the image(s).

Usage

img_euclidean_dist_transform(images, dtype = tf$float32, name = NULL)

Arguments

images A tensor of shape (num_images, num_rows, num_columns, 1) (NHWC), or
(num_rows, num_columns, 1) (HWC) or (num_rows, num_columns) (HW).

dtype DType of the output tensor.

name The name of the op.

Value

Image(s) with the type ‘dtype‘ and same shape as ‘images‘, with the transform applied. If a tensor
of all ones is given as input, the output tensor will be filled with the max value of the ‘dtype‘.

Raises

TypeError: If ‘image‘ is not tf.uint8, or ‘dtype‘ is not floating point. ValueError: If ‘image‘ more
than one channel, or ‘image‘ is not of rank between 2 and 4.

Examples

Not run:
img_path = tf$keras$utils$get_file('tensorflow.png','https://tensorflow.org/images/tf_logo.png')
img_raw = tfioread_file(img_path)
img = tfiodecode_png(img_raw)
img = tf$image$convert_image_dtype(img, tf$float32)
img = tf$image$resize(img, c(500L,500L))
bw_img = 1.0 - tf$image$rgb_to_grayscale(img)
gray = tf$image$convert_image_dtype(bw_img,tf$uint8)
gray = tf$expand_dims(gray, 0L)
eucid = img_euclidean_dist_transform(gray)
eucid = tf$squeeze(eucid, c(0,-1))

End(Not run)

46 img_from_4D

img_flat_transforms_to_matrices

Flat transforms to matrices

Description

Converts projective transforms to affine matrices.

Usage

img_flat_transforms_to_matrices(transforms, name = NULL)

Arguments

transforms Vector of length 8, or batches of transforms with shape ‘(N, 8)‘.

name The name for the op.

Details

Note that the output matrices map output coordinates to input coordinates. For the forward trans-
formation matrix, call ‘tf$linalg$inv‘ on the result.

Value

3D tensor of matrices with shape ‘(N, 3, 3)‘. The output matrices map the *output coordinates* (in
homogeneous coordinates) of each transform to the corresponding *input coordinates*.

Raises

ValueError: If ‘transforms‘ have an invalid shape.

img_from_4D From 4D image

Description

Convert back to an image with ‘ndims‘ rank.

Usage

img_from_4D(image, ndims)

Arguments

image 4D tensor.

ndims The original rank of the image.

img_get_ndims 47

Value

‘ndims‘-D tensor with the same type.

img_get_ndims Get ndims

Description

Print dimensions

Usage

img_get_ndims(image)

Arguments

image image

Value

dimensions of the image

img_interpolate_bilinear

Interpolate bilinear

Description

Similar to Matlab’s interp2 function.

Usage

img_interpolate_bilinear(grid, query_points, indexing = "ij", name = NULL)

Arguments

grid a 4-D float Tensor of shape [batch, height, width, channels].

query_points a 3-D float Tensor of N points with shape [batch, N, 2].

indexing whether the query points are specified as row and column (ij), or Cartesian co-
ordinates (xy).

name a name for the operation (optional).

Details

Finds values for query points on a grid using bilinear interpolation.

48 img_interpolate_spline

Value

values: a 3-D ‘Tensor‘ with shape ‘[batch, N, channels]‘

Raises

ValueError: if the indexing mode is invalid, or if the shape of the inputs invalid.

img_interpolate_spline

Interpolate spline

Description

Interpolate signal using polyharmonic interpolation.

Usage

img_interpolate_spline(
train_points,
train_values,
query_points,
order,
regularization_weight = 0,
name = "interpolate_spline"

)

Arguments

train_points ‘[batch_size, n, d]‘ float ‘Tensor‘ of n d-dimensional locations. These do not
need to be regularly-spaced.

train_values ‘[batch_size, n, k]‘ float ‘Tensor‘ of n c-dimensional values evaluated at train_points.

query_points ‘[batch_size, m, d]‘ ‘Tensor‘ of m d-dimensional locations where we will output
the interpolant’s values.

order order of the interpolation. Common values are 1 for ‘\(\phi(r) = r\), 2 for \(\phi(r)
= r^2 * log(r)\) (thin-plate spline), or 3 for \(\phi(r) = r^3\)‘.

regularization_weight

weight placed on the regularization term. This will depend substantially on the
problem, and it should always be tuned. For many problems, it is reasonable to
use no regularization. If using a non-zero value, we recommend a small value
like 0.001.

name name prefix for ops created by this function

img_matrices_to_flat_transforms 49

Details

The interpolant has the form f(x) = ‘\sum_i = 1^n w_i \phi(||x - c_i||) + v^T x + b‘. This is a
sum of two terms: (1) a weighted sum of radial basis function (RBF) terms, with the centers
\(c_1, ... c_n\), and (2) a linear term with a bias. The \(c_i\) vectors are ’training’ points. In
the code, b is absorbed into v by appending 1 as a final dimension to x. The coefficients w and
v are estimated such that the interpolant exactly fits the value of the function at the \(c_i\) points,
the vector w is orthogonal to each \(c_i\), and the vector w sums to 0. With these constraints,
the coefficients can be obtained by solving a linear system. ‘\(\phi\)‘ is an RBF, parametrized by
an interpolation order. Using order=2 produces the well-known thin-plate spline. We also pro-
vide the option to perform regularized interpolation. Here, the interpolant is selected to trade
off between the squared loss on the training data and a certain measure of its curvature ([de-
tails](https://en.wikipedia.org/wiki/Polyharmonic_spline)). Using a regularization weight greater
than zero has the effect that the interpolant will no longer exactly fit the training data. However, it
may be less vulnerable to overfitting, particularly for high-order interpolation. Note the interpola-
tion procedure is differentiable with respect to all inputs besides the order parameter. We support
dynamically-shaped inputs, where batch_size, n, and m are NULL at graph construction time. How-
ever, d and k must be known.

Value

‘[b, m, k]‘ float ‘Tensor‘ of query values. We use train_points and train_values to perform polyhar-
monic interpolation. The query values are the values of the interpolant evaluated at the locations
specified in query_points.

This is a sum of two terms

(1) a weighted sum of radial basis function: (RBF) terms, with the centers \(c_1, ... c_n\), and (2)
a linear term with a bias. The \(c_i\) vectors are ’training’ points. In the code, b is absorbed into
v by appending 1 as a final dimension to x. The coefficients w and v are estimated such that the
interpolant exactly fits the value of the function at the \(c_i\) points, the vector w is orthogonal to
each \(c_i\), and the vector w sums to 0. With these constraints, the coefficients can be obtained by
solving a linear system.

img_matrices_to_flat_transforms

Matrices to flat transforms

Description

Converts affine matrices to projective transforms.

Usage

img_matrices_to_flat_transforms(transform_matrices, name = NULL)

50 img_mean_filter2d

Arguments

transform_matrices

One or more affine transformation matrices, for the reverse transformation in
homogeneous coordinates. Shape ‘c(3, 3)‘ or ‘c(N, 3, 3)‘.

name The name for the op.

Details

Note that we expect matrices that map output coordinates to input coordinates. To convert forward
transformation matrices, call ‘tf$linalg$inv‘ on the matrices and use the result here.

Value

2D tensor of flat transforms with shape ‘(N, 8)‘, which may be passed into ‘transform‘ op.

Raises

ValueError: If ‘transform_matrices‘ have an invalid shape.

img_mean_filter2d Mean filter2d

Description

Perform mean filtering on image(s).

Usage

img_mean_filter2d(
image,
filter_shape = list(3, 3),
padding = "REFLECT",
constant_values = 0,
name = NULL

)

Arguments

image Either a 2-D Tensor of shape [height, width], a 3-D Tensor of shape [height,
width, channels], or a 4-D Tensor of shape [batch_size, height, width, channels].

filter_shape An integer or tuple/list of 2 integers, specifying the height and width of the 2-
D mean filter. Can be a single integer to specify the same value for all spatial
dimensions.

padding A string, one of "REFLECT", "CONSTANT", or "SYMMETRIC". The type
of padding algorithm to use, which is compatible with mode argument in tf.pad.
For more details, please refer to https://www.tensorflow.org/api_docs/python/tf/pad.

img_median_filter2d 51

constant_values

A scalar, the pad value to use in "CONSTANT" padding mode.

name A name for this operation (optional).

Value

3-D or 4-D ‘Tensor‘ of the same dtype as input.

Raises

ValueError: If ‘image‘ is not 2, 3 or 4-dimensional, if ‘padding‘ is other than "REFLECT", "CON-
STANT" or "SYMMETRIC", or if ‘filter_shape‘ is invalid.

img_median_filter2d Median filter2d

Description

Perform median filtering on image(s).

Usage

img_median_filter2d(
image,
filter_shape = list(3, 3),
padding = "REFLECT",
constant_values = 0,
name = NULL

)

Arguments

image Either a 2-D Tensor of shape [height, width], a 3-D Tensor of shape [height,
width, channels], or a 4-D Tensor of shape [batch_size, height, width, channels].

filter_shape An integer or tuple/list of 2 integers, specifying the height and width of the 2-D
median filter. Can be a single integer to specify the same value for all spatial
dimensions.

padding A string, one of "REFLECT", "CONSTANT", or "SYMMETRIC". The type
of padding algorithm to use, which is compatible with mode argument in tf.pad.
For more details, please refer to https://www.tensorflow.org/api_docs/python/tf/pad.

constant_values

A scalar, the pad value to use in "CONSTANT" padding mode.

name A name for this operation (optional)

Value

3-D or 4-D ‘Tensor‘ of the same dtype as input.

52 img_random_cutout

Raises

ValueError: If ‘image‘ is not 2, 3 or 4-dimensional, if ‘padding‘ is other than "REFLECT", "CON-
STANT" or "SYMMETRIC", or if ‘filter_shape‘ is invalid.

img_random_cutout Random cutout

Description

Apply cutout (https://arxiv.org/abs/1708.04552) to images.

Usage

img_random_cutout(
images,
mask_size,
constant_values = 0,
seed = NULL,
data_format = "channels_last"

)

Arguments

images A tensor of shape (batch_size, height, width, channels) (NHWC), (batch_size,
channels, height, width)(NCHW).

mask_size Specifies how big the zero mask that will be generated is that is applied to the im-
ages. The mask will be of size (mask_height x mask_width). Note: mask_size
should be divisible by 2.

constant_values

What pixel value to fill in the images in the area that has the cutout mask applied
to it.

seed An integer. Used in combination with ‘tf$random$set_seed‘ to create a repro-
ducible sequence of tensors across multiple calls.

data_format A string, one of ‘channels_last‘ (default) or ‘channels_first‘. The ordering of
the dimensions in the inputs. ‘channels_last‘ corresponds to inputs with shape
‘(batch_size, ..., channels)‘ while ‘channels_first‘ corresponds to inputs with
shape ‘(batch_size, channels, ...)‘.

Details

This operation applies a (mask_height x mask_width) mask of zeros to a random location within
‘img‘. The pixel values filled in will be of the value ‘replace‘. The located where the mask will be
applied is randomly chosen uniformly over the whole images.

Value

An image Tensor.

img_random_hsv_in_yiq 53

Raises

InvalidArgumentError: if mask_size can’t be divisible by 2.

img_random_hsv_in_yiq Random hsv in yiq

Description

Adjust hue, saturation, value of an RGB image randomly in YIQ color

Usage

img_random_hsv_in_yiq(
image,
max_delta_hue = 0,
lower_saturation = 1,
upper_saturation = 1,
lower_value = 1,
upper_value = 1,
seed = NULL,
name = NULL

)

Arguments

image RGB image or images. Size of the last dimension must be 3.

max_delta_hue float. Maximum value for the random delta_hue. Passing 0 disables adjusting
hue.

lower_saturation

float. Lower bound for the random scale_saturation.
upper_saturation

float. Upper bound for the random scale_saturation.

lower_value float. Lower bound for the random scale_value.

upper_value float. Upper bound for the random scale_value.

seed An operation-specific seed. It will be used in conjunction with the graph-level
seed to determine the real seeds that will be used in this operation. Please see
the documentation of set_random_seed for its interaction with the graph-level
random seed.

name A name for this operation (optional).

Details

space. Equivalent to ‘adjust_yiq_hsv()‘ but uses a ‘delta_h‘ randomly picked in the interval ‘[-
max_delta_hue, max_delta_hue]‘, a ‘scale_saturation‘ randomly picked in the interval ‘[lower_saturation,
upper_saturation]‘, and a ‘scale_value‘ randomly picked in the interval ‘[lower_saturation, up-
per_saturation]‘.

54 img_resampler

Value

3-D float tensor of shape ‘[height, width, channels]‘.

Raises

ValueError: if ‘max_delta‘, ‘lower_saturation‘, ‘upper_saturation‘, ‘lower_value‘, or ‘upper_value‘
is invalid.

Examples

Not run:
delta = 0.5
lower_saturation = 0.1
upper_saturation = 0.9
lower_value = 0.2
upper_value = 0.8
rand_hsvinyiq = img_random_hsv_in_yiq(img, delta,
lower_saturation, upper_saturation,
lower_value, upper_value)
)

End(Not run)

img_resampler Resampler

Description

Resamples input data at user defined coordinates.

Usage

img_resampler(data, warp, name = NULL)

Arguments

data Tensor of shape [batch_size, data_height, data_width, data_num_channels] con-
taining 2D data that will be resampled.

warp Tensor of minimum rank 2 containing the coordinates at which resampling will
be performed. Since only bilinear interpolation is currently supported, the last
dimension of the warp tensor must be 2, representing the (x, y) coordinate where
x is the index for width and y is the index for height.

name Optional name of the op.

Details

The resampler currently only supports bilinear interpolation of 2D data.

img_rotate 55

Value

Tensor of resampled values from ‘data‘. The output tensor shape is determined by the shape of the
warp tensor. For example, if ‘data‘ is of shape ‘[batch_size, data_height, data_width, data_num_channels]‘
and warp of shape ‘[batch_size, dim_0, ... , dim_n, 2]‘ the output will be of shape ‘[batch_size,
dim_0, ... , dim_n, data_num_channels]‘.

Raises

ImportError: if the wrapper generated during compilation is not present when the function is called.

img_rotate Rotate

Description

Rotate image(s) counterclockwise by the passed angle(s) in radians.

Usage

img_rotate(images, angles, interpolation = "NEAREST", name = NULL)

Arguments

images A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC),
(num_rows, num_columns, num_channels) (HWC), or (num_rows, num_columns)
(HW).

angles A scalar angle to rotate all images by, or (if images has rank 4) a vector of length
num_images, with an angle for each image in the batch.

interpolation Interpolation mode. Supported values: "NEAREST", "BILINEAR".

name The name of the op.

Value

Image(s) with the same type and shape as ‘images‘, rotated by the given angle(s). Empty space due
to the rotation will be filled with zeros.

Raises

TypeError: If ‘image‘ is an invalid type.

56 img_shear_x

img_sharpness Sharpness

Description

Change sharpness of image(s)

Usage

img_sharpness(image, factor)

Arguments

image an image

factor A floating point value or Tensor above 0.0.

Value

Image(s) with the same type and shape as ‘images‘, sharper.

img_shear_x Shear x-axis

Description

Perform shear operation on an image (x-axis)

Usage

img_shear_x(image, level, replace)

Arguments

image A 3D image Tensor.

level A float denoting shear element along y-axis

replace A one or three value 1D tensor to fill empty pixels.

Value

Transformed image along X or Y axis, with space outside image filled with replace.

img_shear_y 57

img_shear_y Shear y-axis

Description

Perform shear operation on an image (y-axis)

Usage

img_shear_y(image, level, replace)

Arguments

image A 3D image Tensor.

level A float denoting shear element along x-axis

replace A one or three value 1D tensor to fill empty pixels.

Value

Transformed image along X or Y axis, with space outside image filled with replace.

img_sparse_image_warp Sparse image warp

Description

Image warping using correspondences between sparse control points.

Usage

img_sparse_image_warp(
image,
source_control_point_locations,
dest_control_point_locations,
interpolation_order = 2,
regularization_weight = 0,
num_boundary_points = 0,
name = "sparse_image_warp"

)

58 img_to_4D

Arguments

image ‘[batch, height, width, channels]‘ float ‘Tensor‘
source_control_point_locations

‘[batch, num_control_points, 2]‘ float ‘Tensor‘
dest_control_point_locations

‘[batch, num_control_points, 2]‘ float ‘Tensor‘
interpolation_order

polynomial order used by the spline interpolation
regularization_weight

weight on smoothness regularizer in interpolation
num_boundary_points

How many zero-flow boundary points to include at each image edge. Usage:
num_boundary_points=0: don’t add zero-flow points num_boundary_points=1:
4 corners of the image num_boundary_points=2: 4 corners and one in the middle
of each edge (8 points total) num_boundary_points=n: 4 corners and n-1 along
each edge

name A name for the operation (optional).

Details

Apply a non-linear warp to the image, where the warp is specified by the source and destina-
tion locations of a (potentially small) number of control points. First, we use a polyharmonic
spline (‘tf$contrib$image$interpolate_spline‘) to interpolate the displacements between the corre-
sponding control points to a dense flow field. Then, we warp the image using this dense flow
field (‘tf$contrib$image$dense_image_warp‘). Let t index our control points. For regulariza-
tion_weight=0, we have: warped_image[b, dest_control_point_locations[b, t, 0], dest_control_point_locations[b,
t, 1], :] = image[b, source_control_point_locations[b, t, 0], source_control_point_locations[b, t,
1], :]. For regularization_weight > 0, this condition is met approximately, since regularized in-
terpolation trades off smoothness of the interpolant vs. reconstruction of the interpolant at the
control points. See ‘tf$contrib$image$interpolate_spline‘ for further documentation of the interpo-
lation_order and regularization_weight arguments.

Value

warped_image: ‘[batch, height, width, channels]‘ float ‘Tensor‘ with same type as input image.
flow_field: ‘[batch, height, width, 2]‘ float ‘Tensor‘ containing the dense flow field produced by the
interpolation.

img_to_4D To 4D image

Description

Convert 2/3/4D image to 4D image.

img_transform 59

Usage

img_to_4D(image)

Arguments

image 2/3/4D tensor.

Value

4D tensor with the same type.

Examples

Not run:
img_to_4D(img)

End(Not run)

img_transform Transform

Description

Applies the given transform(s) to the image(s).

Usage

img_transform(
images,
transforms,
interpolation = "NEAREST",
output_shape = NULL,
name = NULL

)

Arguments

images A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC),
(num_rows, num_columns, num_channels) (HWC), or (num_rows, num_columns)
(HW).

transforms Projective transform matrix/matrices. A vector of length 8 or tensor of size N
x 8. If one row of transforms is [a0, a1, a2, b0, b1, b2, c0, c1], then it maps
the output point (x, y) to a transformed input point (x’, y’) = ((a0 x + a1 y +
a2) / k, (b0 x + b1 y + b2) / k), where k = c0 x + c1 y + 1. The transforms are
inverted compared to the transform mapping input points to output points. Note
that gradients are not backpropagated into transformation parameters.

60 img_translate

interpolation Interpolation mode. Supported values: "NEAREST", "BILINEAR".

output_shape Output dimesion after the transform, [height, width]. If NULL, output is the
same size as input image.

name The name of the op.

Value

Image(s) with the same type and shape as ‘images‘, with the given transform(s) applied. Trans-
formed coordinates outside of the input image will be filled with zeros.

Raises

TypeError: If ‘image‘ is an invalid type. ValueError: If output shape is not 1-D int32 Tensor.

Examples

Not run:
transform = img_transform(img, c(1.0, 1.0, -250, 0.0, 1.0, 0.0, 0.0, 0.0))

End(Not run)

img_translate Translate

Description

Translate image(s) by the passed vectors(s).

Usage

img_translate(images, translations, interpolation = "NEAREST", name = NULL)

Arguments

images A tensor of shape (num_images, num_rows, num_columns, num_channels) (NHWC),
(num_rows, num_columns, num_channels) (HWC), or (num_rows, num_columns)
(HW). The rank must be statically known (the shape is not TensorShape(None)).

translations A vector representing [dx, dy] or (if images has rank 4) a matrix of length
num_images, with a [dx, dy] vector for each image in the batch.

interpolation Interpolation mode. Supported values: "NEAREST", "BILINEAR".

name The name of the op.

img_translate_xy 61

Value

Image(s) with the same type and shape as ‘images‘, translated by the given vector(s). Empty space
due to the translation will be filled with zeros.

Raises

TypeError: If ‘images‘ is an invalid type.

img_translate_xy Translate xy dims

Description

Translates image in X or Y dimension.

Usage

img_translate_xy(image, translate_to, replace)

Arguments

image A 3D image Tensor.

translate_to A 1D tensor to translate [x, y]

replace A one or three value 1D tensor to fill empty pixels.

Value

Translated image along X or Y axis, with space outside image filled with replace. Raises: ValueEr-
ror: if axis is neither 0 nor 1.

Raises

ValueError: if axis is neither 0 nor 1.

62 img_unwrap

img_translations_to_projective_transforms

Translations to projective transforms

Description

Returns projective transform(s) for the given translation(s).

Usage

img_translations_to_projective_transforms(translations, name = NULL)

Arguments

translations A 2-element list representing [dx, dy] or a matrix of 2-element lists representing
[dx, dy] to translate for each image (for a batch of images). The rank must be
statically known (the shape is not ‘TensorShape(NULL)‘).

name The name of the op.

Value

A tensor of shape c(num_images, 8) projective transforms which can be given to ‘img_transform‘.

img_unwrap Uwrap

Description

Unwraps an image produced by wrap.

Usage

img_unwrap(image, replace)

Arguments

image image

replace a one or three value 1D tensor to fill empty pixels.

Details

Where there is a 0 in the last channel for every spatial position, the rest of the three channels in
that spatial dimension are grayed (set to 128). Operations like translate and shear on a wrapped
Tensor will leave 0s in empty locations. Some transformations look at the intensity of values to
do preprocessing, and we want these empty pixels to assume the ’average’ value, rather than pure
black.

img_wrap 63

Value

a 3D image Tensor with 3 channels.

img_wrap Wrap

Description

wrap an image array

Usage

img_wrap(image)

Arguments

image a 3D Image Tensor with 4 channels.

Value

’image’ with an extra channel set to all 1s.

install_tfaddons Install TensorFlow SIG Addons

Description

This function is used to install the ‘TensorFlow SIG Addons‘ python module

Usage

install_tfaddons(version = NULL, ..., restart_session = TRUE)

Arguments

version for specific version of ‘TensorFlow SIG Addons‘, e.g. "0.10.0"

... other arguments passed to [reticulate::py_install()].
restart_session

Restart R session after installing (note this will only occur within RStudio).

Value

a python module ‘tensorflow_addons‘

64 layer_correlation_cost

layer_activation_gelu Gaussian Error Linear Unit

Description

Gaussian Error Linear Unit

Usage

layer_activation_gelu(object, approximate = TRUE, ...)

Arguments

object Model or layer object

approximate (bool) Whether to apply approximation

... additional parameters to pass

Details

A smoother version of ReLU generally used in the BERT or BERT architecture based models.
Original paper: https://arxiv.org/abs/1606.08415

Value

A tensor

Note

Input shape: Arbitrary. Use the keyword argument ‘input_shape‘ (tuple of integers, d oes not
include the samples axis) when using this layer as the first layer in a model.

Output shape: Same shape as the input.

layer_correlation_cost

Correlation Cost Layer.

Description

Correlation Cost Layer.

layer_filter_response_normalization 65

Usage

layer_correlation_cost(
object,
kernel_size,
max_displacement,
stride_1,
stride_2,
pad,
data_format,
...

)

Arguments

object Model or layer object

kernel_size An integer specifying the height and width of the patch used to compute the
per-patch costs.

max_displacement

An integer specifying the maximum search radius for each position.

stride_1 An integer specifying the stride length in the input.

stride_2 An integer specifying the stride length in the patch.

pad An integer specifying the paddings in height and width.

data_format Specifies the data format. Possible values are: "channels_last" float [batch,
height, width, channels] "channels_first" float [batch, channels, height, width]
Defaults to "channels_last".

... additional parameters to pass

Details

This layer implements the correlation operation from FlowNet Learning Optical Flow with Convo-
lutional Networks (Fischer et al.): https://arxiv.org/abs/1504.06

Value

A tensor

layer_filter_response_normalization

FilterResponseNormalization

Description

Filter response normalization layer.

66 layer_filter_response_normalization

Usage

layer_filter_response_normalization(
object,
epsilon = 1e-06,
axis = c(1, 2),
beta_initializer = "zeros",
gamma_initializer = "ones",
beta_regularizer = NULL,
gamma_regularizer = NULL,
beta_constraint = NULL,
gamma_constraint = NULL,
learned_epsilon = FALSE,
learned_epsilon_constraint = NULL,
name = NULL

)

Arguments

object Model or layer object

epsilon Small positive float value added to variance to avoid dividing by zero.

axis List of axes that should be normalized. This should represent the spatial dimen-
sions.

beta_initializer

Initializer for the beta weight.
gamma_initializer

Initializer for the gamma weight.
beta_regularizer

Optional regularizer for the beta weight.
gamma_regularizer

Optional regularizer for the gamma weight.
beta_constraint

Optional constraint for the beta weight.
gamma_constraint

Optional constraint for the gamma weight.
learned_epsilon

(bool) Whether to add another learnable epsilon parameter or not.
learned_epsilon_constraint

learned_epsilon_constraint

name Optional name for the layer

Details

Filter Response Normalization (FRN), a normalization method that enables models trained with
per-channel normalization to achieve high accuracy. It performs better than all other normalization
techniques for small batches and is par with Batch Normalization for bigger batch sizes.

layer_group_normalization 67

Value

A tensor

Note

Input shape Arbitrary. Use the keyword argument ‘input_shape‘ (list of integers, does not include
the samples axis) when using this layer as the first layer in a model. This layer, as of now, works
on a 4-D tensor where the tensor should have the shape [N X H X W X C] TODO: Add support
for NCHW data format and FC layers. Output shape Same shape as input. References - [Filter
Response Normalization Layer: Eliminating Batch Dependence in the training of Deep Neural
Networks] (https://arxiv.org/abs/1911.09737)

layer_group_normalization

Group normalization layer

Description

Group normalization layer

Usage

layer_group_normalization(
object,
groups = 2,
axis = -1,
epsilon = 0.001,
center = TRUE,
scale = TRUE,
beta_initializer = "zeros",
gamma_initializer = "ones",
beta_regularizer = NULL,
gamma_regularizer = NULL,
beta_constraint = NULL,
gamma_constraint = NULL,
...

)

Arguments

object Model or layer object

groups Integer, the number of groups for Group Normalization. Can be in the range [1,
N] where N is the input dimension. The input dimension must be divisible by
the number of groups.

axis Integer, the axis that should be normalized.

epsilon Small float added to variance to avoid dividing by zero.

68 layer_instance_normalization

center If TRUE, add offset of beta to normalized tensor. If False, beta is ignored.

scale If TRUE, multiply by gamma. If False, gamma is not used.
beta_initializer

Initializer for the beta weight.
gamma_initializer

Initializer for the gamma weight.
beta_regularizer

Optional regularizer for the beta weight.
gamma_regularizer

Optional regularizer for the gamma weight.
beta_constraint

Optional constraint for the beta weight.
gamma_constraint

Optional constraint for the gamma weight.

... additional parameters to pass

Details

Group Normalization divides the channels into groups and computes within each group the mean
and variance for normalization. Empirically, its accuracy is more stable than batch norm in a wide
range of small batch sizes, if learning rate is adjusted linearly with batch sizes. Relation to Layer
Normalization: If the number of groups is set to 1, then this operation becomes identical to Layer
Normalization. Relation to Instance Normalization: If the number of groups is set to the input
dimension (number of groups is equal to number of channels), then this operation becomes identical
to Instance Normalization.

Value

A tensor

layer_instance_normalization

Instance normalization layer

Description

Instance normalization layer

Usage

layer_instance_normalization(
object,
groups = 2,
axis = -1,
epsilon = 0.001,

layer_instance_normalization 69

center = TRUE,
scale = TRUE,
beta_initializer = "zeros",
gamma_initializer = "ones",
beta_regularizer = NULL,
gamma_regularizer = NULL,
beta_constraint = NULL,
gamma_constraint = NULL,
...

)

Arguments

object Model or layer object

groups Integer, the number of groups for Group Normalization. Can be in the range [1,
N] where N is the input dimension. The input dimension must be divisible by
the number of groups.

axis Integer, the axis that should be normalized.

epsilon Small float added to variance to avoid dividing by zero.

center If TRUE, add offset of ‘beta‘ to normalized tensor. If FALSE, ‘beta‘ is ignored.

scale If TRUE, multiply by ‘gamma‘. If FALSE, ‘gamma‘ is not used.
beta_initializer

Initializer for the beta weight.
gamma_initializer

Initializer for the gamma weight.
beta_regularizer

Optional regularizer for the beta weight.
gamma_regularizer

Optional regularizer for the gamma weight.
beta_constraint

Optional constraint for the beta weight.
gamma_constraint

Optional constraint for the gamma weight.

... additional parameters to pass

Details

Instance Normalization is an specific case of “‘GroupNormalizationsince“‘ it normalizes all features
of one channel. The Groupsize is equal to the channel size. Empirically, its accuracy is more stable
than batch norm in a wide range of small batch sizes, if learning rate is adjusted linearly with batch
sizes.

Value

A tensor

70 layer_multi_head_attention

References

[Instance Normalization: The Missing Ingredient for Fast Stylization](https://arxiv.org/abs/1607.08022)

layer_maxout Maxout layer

Description

Maxout layer

Usage

layer_maxout(object, num_units, axis = -1, ...)

Arguments

object Model or layer object

num_units Specifies how many features will remain after maxout in the axis dimension
(usually channel). This must be a factor of number of features.

axis The dimension where max pooling will be performed. Default is the last dimen-
sion.

... additional parameters to pass

Details

"Maxout Networks" Ian J. Goodfellow, David Warde-Farley, Mehdi Mirza, Aaron Courville, Yoshua
Bengio. https://arxiv.org/abs/1302.4389 Usually the operation is performed in the filter/channel di-
mension. This can also be used after Dense layers to reduce number of features.

Value

A tensor

layer_multi_head_attention

Keras-based multi head attention layer

Description

MultiHead Attention layer.

layer_multi_head_attention 71

Usage

layer_multi_head_attention(
object,
head_size,
num_heads,
output_size = NULL,
dropout = 0,
use_projection_bias = TRUE,
return_attn_coef = FALSE,
kernel_initializer = "glorot_uniform",
kernel_regularizer = NULL,
kernel_constraint = NULL,
bias_initializer = "zeros",
bias_regularizer = NULL,
bias_constraint = NULL,
...

)

Arguments

object Model or layer object

head_size int, dimensionality of the ‘query‘, ‘key‘ and ‘value‘ tensors after the linear trans-
formation.

num_heads int, number of attention heads.

output_size int, dimensionality of the output space, if ‘NULL‘ then the input dimension of
‘value‘ or ‘key‘ will be used, default ‘NULL‘.

dropout float, ‘rate‘ parameter for the dropout layer that is applied to attention after soft-
max, default ‘0‘.

use_projection_bias

bool, whether to use a bias term after the linear output projection.
return_attn_coef

bool, if ‘TRUE‘, return the attention coefficients as an additional output argu-
ment.

kernel_initializer

initializer, initializer for the kernel weights.
kernel_regularizer

regularizer, regularizer for the kernel weights.
kernel_constraint

constraint, constraint for the kernel weights.
bias_initializer

initializer, initializer for the bias weights.
bias_regularizer

regularizer, regularizer for the bias weights.
bias_constraint

constraint, constraint for the bias weights.

... additional parameters to pass

72 layer_nas_cell

Details

Defines the MultiHead Attention operation as defined in [Attention Is All You Need](https://arxiv.org/abs/1706.03762)
which takes in a ‘query‘, ‘key‘ and ‘value‘ tensors returns the dot-product attention between them.

Value

A tensor

Examples

Not run:

mha = layer_multi_head_attention(head_size=128, num_heads=128)
query = tf$random$uniform(list(32L, 20L, 200L)) # (batch_size, query_elements, query_depth)
key = tf$random$uniform(list(32L, 15L, 300L)) # (batch_size, key_elements, key_depth)
value = tf$random$uniform(list(32L, 15L, 400L)) # (batch_size, key_elements, value_depth)
attention = mha(list(query, key, value)) # (batch_size, query_elements, value_depth)

If `value` is not given then internally `value = key` will be used:
mha = layer_multi_head_attention(head_size=128, num_heads=128)
query = tf$random$uniform(list(32L, 20L, 200L)) # (batch_size, query_elements, query_depth)
key = tf$random$uniform(list(32L, 15L, 300L)) # (batch_size, key_elements, key_depth)
attention = mha(list(query, key)) # (batch_size, query_elements, value_depth)

End(Not run)

layer_nas_cell Neural Architecture Search (NAS) recurrent network cell.

Description

Neural Architecture Search (NAS) recurrent network cell.

Usage

layer_nas_cell(
object,
units,
projection = NULL,
use_bias = FALSE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "glorot_uniform",
projection_initializer = "glorot_uniform",
bias_initializer = "zeros",
...

)

layer_norm_lstm_cell 73

Arguments

object Model or layer object

units int, The number of units in the NAS cell.

projection (optional) int, The output dimensionality for the projection matrices. If None,
no projection is performed.

use_bias (optional) bool, If ‘TRUE‘ then use biases within the cell. This is ‘FALSE‘ by
default.

kernel_initializer

Initializer for kernel weight.
recurrent_initializer

Initializer for recurrent kernel weight.
projection_initializer

Initializer for projection weight, used when projection is not ‘NULL‘.
bias_initializer

Initializer for bias, used when ‘use_bias‘ is ‘TRUE‘.

... Additional keyword arguments.

Details

This implements the recurrent cell from the paper: https://arxiv.org/abs/1611.01578 Barret Zoph
and Quoc V. Le. "Neural Architecture Search with Reinforcement Learning" Proc. ICLR 2017.
The class uses an optional projection layer.

Value

A tensor

layer_norm_lstm_cell LSTM cell with layer normalization and recurrent dropout.

Description

LSTM cell with layer normalization and recurrent dropout.

Usage

layer_norm_lstm_cell(
object,
units,
activation = "tanh",
recurrent_activation = "sigmoid",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",

74 layer_norm_lstm_cell

unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
norm_gamma_initializer = "ones",
norm_beta_initializer = "zeros",
norm_epsilon = 0.001,
...

)

Arguments

object Model or layer object

units Positive integer, dimensionality of the output space.

activation Activation function to use. Default: hyperbolic tangent (‘tanh‘). If you pass
‘NULL‘, no activation is applied (ie. "linear" activation: ‘a(x) = x‘).

recurrent_activation

Activation function to use for the recurrent step. Default: sigmoid (‘sigmoid‘).
If you pass ‘NULL‘, no activation is applied (ie. "linear" activation: ‘a(x) = x‘).

use_bias Boolean, whether the layer uses a bias vector.
kernel_initializer

Initializer for the ‘kernel‘ weights matrix, used for the linear transformation of
the inputs.

recurrent_initializer

Initializer for the ‘recurrent_kernel‘ weights matrix, used for the linear transfor-
mation of the recurrent state.

bias_initializer

Initializer for the bias vector.
unit_forget_bias

Boolean. If True, add 1 to the bias of the forget gate at initialization. Setting it
to true will also force ‘bias_initializer="zeros"‘. This is recommended in [Joze-
fowicz et al.](http://www.jmlr.org/proceedings/papers/v37/jozefowicz15.pdf)

kernel_regularizer

Regularizer function applied to the ‘kernel‘ weights matrix.
recurrent_regularizer

Regularizer function applied to the ‘recurrent_kernel‘ weights matrix.
bias_regularizer

Regularizer function applied to the bias vector.
kernel_constraint

Constraint function applied to the ‘kernel‘ weights matrix.
recurrent_constraint

Constraint function applied to the ‘recurrent_kernel‘ weights matrix.

layer_poincare_normalize 75

bias_constraint

Constraint function applied to the bias vector.

dropout Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the inputs.

recurrent_dropout

Float between 0 and 1. Fraction of the units to drop for the linear transformation
of the recurrent state.

norm_gamma_initializer

Initializer for the layer normalization gain initial value.
norm_beta_initializer

Initializer for the layer normalization shift initial value.

norm_epsilon Float, the epsilon value for normalization layers.

... List, the other keyword arguments for layer creation.

Details

This class adds layer normalization and recurrent dropout to a LSTM unit. Layer normalization im-
plementation is based on: https://arxiv.org/abs/1607.06450. "Layer Normalization" Jimmy Lei Ba,
Jamie Ryan Kiros, Geoffrey E. Hinton and is applied before the internal nonlinearities. Recurrent
dropout is based on: https://arxiv.org/abs/1603.05118 "Recurrent Dropout without Memory Loss"
Stanislau Semeniuta, Aliaksei Severyn, Erhardt Barth.

Value

A tensor

layer_poincare_normalize

Project into the Poincare ball with norm <= 1.0 - epsilon

Description

Project into the Poincare ball with norm <= 1.0 - epsilon

Usage

layer_poincare_normalize(object, axis = 1, epsilon = 1e-05, ...)

Arguments

object Model or layer object

axis Axis along which to normalize. A scalar or a vector of integers.

epsilon A small deviation from the edge of the unit sphere for numerical stability.

... additional parameters to pass

76 layer_sparsemax

Details

https://en.wikipedia.org/wiki/Poincare_ball_model Used in Poincare Embeddings for Learning Hi-
erarchical Representations Maximilian Nickel, Douwe Kiela https://arxiv.org/pdf/1705.08039.pdf
For a 1-D tensor with axis = 0, computes

Value

A tensor

layer_sparsemax Sparsemax activation function

Description

Sparsemax activation function

Usage

layer_sparsemax(object, axis = -1, ...)

Arguments

object Model or layer object

axis Integer, axis along which the sparsemax normalization is applied.

... additional parameters to pass

Details

The output shape is the same as the input shape. https://arxiv.org/abs/1602.02068

Value

A tensor

Examples

Not run:
model = keras_model_sequential() %>%

layer_conv_2d(filters = 10, kernel_size = c(3,3),input_shape = c(28,28,1),
activation = activation_gelu) %>%

layer_sparsemax()

End(Not run)

layer_weight_normalization 77

layer_weight_normalization

Weight Normalization layer

Description

Weight Normalization layer

Usage

layer_weight_normalization(object, layer, data_init = TRUE, ...)

Arguments

object Model or layer object

layer a layer instance.

data_init If ‘TRUE‘ use data dependent variable initialization

... additional parameters to pass

Details

This wrapper reparameterizes a layer by decoupling the weight’s magnitude and direction. This
speeds up convergence by improving the conditioning of the optimization problem. Weight Normal-
ization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks: https://arxiv.org/abs/1602.07868
Tim Salimans, Diederik P. Kingma (2016) WeightNormalization wrapper works for keras and tf lay-
ers.

Value

A tensor

Examples

Not run:

model= keras_model_sequential() %>%
layer_weight_normalization(
layer_conv_2d(filters = 2, kernel_size = 2, activation = 'relu'),
input_shape = c(32L, 32L, 3L))
model

End(Not run)

78 lookahead_mechanism

lookahead_mechanism Lookahead mechanism

Description

Lookahead mechanism

Usage

lookahead_mechanism(
optimizer,
sync_period = 6,
slow_step_size = 0.5,
name = "Lookahead",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

Arguments

optimizer The original optimizer that will be used to compute and apply the gradients.

sync_period An integer. The synchronization period of lookahead. Enable lookahead mech-
anism by setting it with a positive value.

slow_step_size A floating point value. The ratio for updating the slow weights.

name Optional name for the operations created when applying gradients. Defaults to
"Lookahead".

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Details

The mechanism is proposed by Michael R. Zhang et.al in the paper [Lookahead Optimizer: k steps
forward, 1 step back](https://arxiv.org/abs/1907.08610v1). The optimizer iteratively updates two
sets of weights: the search directions for weights are chosen by the inner optimizer, while the "slow
weights" are updated each k steps based on the directions of the "fast weights" and the two sets of
weights are synchronized. This method improves the learning stability and lowers the variance of
its inner optimizer.

loss_contrastive 79

Value

Optimizer for use with ‘keras::compile()‘

Examples

Not run:

opt = tf$keras$optimizers$SGD(learning_rate)
opt = lookahead_mechanism(opt)

End(Not run)

loss_contrastive Contrastive loss

Description

Computes the contrastive loss between ‘y_true‘ and ‘y_pred‘.

Usage

loss_contrastive(
margin = 1,
reduction = tf$keras$losses$Reduction$SUM_OVER_BATCH_SIZE,
name = "contrasitve_loss"

)

Arguments

margin Float, margin term in the loss definition. Default value is 1.0.

reduction (Optional) Type of tf$keras$losses$Reduction to apply. Default value is SUM_OVER_BATCH_SIZE.

name (Optional) name for the loss.

Details

This loss encourages the embedding to be close to each other for the samples of the same label and
the embedding to be far apart at least by the margin constant for the samples of different labels. The
euclidean distances ‘y_pred‘ between two embedding matrices ‘a‘ and ‘b‘ with shape [batch_size,
hidden_size] can be computed as follows: “‘python # y_pred = ‘\sqrt‘ (‘\sum_i‘ (a[:, i] - b[:,
i])^2) y_pred = tf$linalg.norm(a - b, axis=1) “‘ See: http://yann.lecun.com/exdb/publis/pdf/hadsell-
chopra-lecun-06.pdf

Value

contrastive_loss: 1-D float ‘Tensor‘ with shape [batch_size].

80 loss_giou

Examples

Not run:
keras_model_sequential() %>%

layer_dense(4, input_shape = c(784)) %>%
compile(
optimizer = 'sgd',
loss=loss_contrastive(),
metrics='accuracy'

)

End(Not run)

loss_giou Implements the GIoU loss function.

Description

GIoU loss was first introduced in the [Generalized Intersection over Union: A Metric and A Loss
for Bounding Box Regression](https://giou.stanford.edu/GIoU.pdf). GIoU is an enhancement for
models which use IoU in object detection.

Usage

loss_giou(
mode = "giou",
reduction = tf$keras$losses$Reduction$AUTO,
name = "giou_loss"

)

Arguments

mode one of [’giou’, ’iou’], decided to calculate GIoU or IoU loss.

reduction (Optional) Type of tf$keras$losses$Reduction to apply. Default value is SUM_OVER_BATCH_SIZE.

name A name for the operation (optional).

Value

GIoU loss float ‘Tensor‘.

loss_hamming 81

loss_hamming Hamming loss

Description

Computes hamming loss.

Usage

loss_hamming(
mode,
name = "hamming_loss",
threshold = NULL,
dtype = tf$float32,
...

)

Arguments

mode multi-class or multi-label

name (optional) String name of the metric instance.

threshold Elements of ‘y_pred‘ greater than threshold are converted to be 1, and the rest
0. If threshold is None, the argmax is converted to 1, and the rest 0.

dtype (optional) Data type of the metric result. Defaults to ‘tf$float32‘.

... additional arguments that are passed on to function ‘fn‘.

Details

Hamming loss is the fraction of wrong labels to the total number of labels. In multi-class classifi-
cation, hamming loss is calculated as the hamming distance between ‘actual‘ and ‘predictions‘. In
multi-label classification, hamming loss penalizes only the individual labels.

Value

hamming loss: float

Examples

Not run:

multi-class hamming loss
hl = loss_hamming(mode='multiclass', threshold=0.6)
actuals = tf$constant(list(as.integer(c(1, 0, 0, 0)),as.integer(c(0, 0, 1, 0)),

as.integer(c(0, 0, 0, 1)),as.integer(c(0, 1, 0, 0))),
dtype=tf$float32)

predictions = tf$constant(list(c(0.8, 0.1, 0.1, 0),
c(0.2, 0, 0.8, 0),

82 loss_lifted_struct

c(0.05, 0.05, 0.1, 0.8),
c(1, 0, 0, 0)),
dtype=tf$float32)

hl$update_state(actuals, predictions)
paste('Hamming loss: ', hl$result()$numpy()) # 0.25
multi-label hamming loss
hl = loss_hamming(mode='multilabel', threshold=0.8)
actuals = tf$constant(list(as.integer(c(1, 0, 1, 0)),as.integer(c(0, 1, 0, 1)),

as.integer(c(0, 0, 0,1))), dtype=tf$int32)
predictions = tf$constant(list(c(0.82, 0.5, 0.90, 0),

c(0, 1, 0.4, 0.98),
c(0.89, 0.79, 0, 0.3)),
dtype=tf$float32)

hl$update_state(actuals, predictions)
paste('Hamming loss: ', hl$result()$numpy()) # 0.16666667

End(Not run)

loss_lifted_struct Lifted structured loss

Description

Computes the lifted structured loss.

Usage

loss_lifted_struct(margin = 1, name = NULL, ...)

Arguments

margin Float, margin term in the loss definition.

name Optional name for the op.

... additional parameters to pass

Details

The loss encourages the positive distances (between a pair of embeddings with the same labels)
to be smaller than any negative distances (between a pair of embeddings with different labels)
in the mini-batch in a way that is differentiable with respect to the embedding vectors. See:
https://arxiv.org/abs/1511.06452

Value

lifted_loss: tf$float32 scalar.

loss_npairs 83

loss_npairs Npairs loss

Description

Computes the npairs loss between ‘y_true‘ and ‘y_pred‘.

Usage

loss_npairs(name = "npairs_loss")

Arguments

name Optional name for the op.

Details

Npairs loss expects paired data where a pair is composed of samples from the same labels and each
pairs in the minibatch have different labels. The loss takes each row of the pair-wise similarity
matrix, ‘y_pred‘, as logits and the remapped multi-class labels, ‘y_true‘, as labels. The similarity
matrix ‘y_pred‘ between two embedding matrices ‘a‘ and ‘b‘ with shape ‘[batch_size, hidden_size]‘
can be computed as follows: “‘ # y_pred = a * b^T y_pred = tf$matmul(a, b, transpose_a=FALSE,
transpose_b=TRUE) “‘ See: http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf

Value

npairs_loss: float scalar.

loss_npairs_multilabel

Npairs multilabel loss

Description

Computes the npairs loss between multilabel data ‘y_true‘ and ‘y_pred‘.

Usage

loss_npairs_multilabel(name = "npairs_multilabel_loss")

Arguments

name Optional name for the op.

84 loss_pinball

Details

Npairs loss expects paired data where a pair is composed of samples from the same labels and
each pairs in the minibatch have different labels. The loss takes each row of the pair-wise similarity
matrix, ‘y_pred‘, as logits and the remapped multi-class labels, ‘y_true‘, as labels. To deal with mul-
tilabel inputs, the count of label intersection is computed as follows: “‘ L_i,j = | set_of_labels_for(i)
‘\cap‘ set_of_labels_for(j) | “‘ Each row of the count based label matrix is further normalized so
that each row sums to one. ‘y_true‘ should be a binary indicator for classes. That is, if ‘y_true[i, j]
= 1‘, then ‘i‘th sample is in ‘j‘th class; if ‘y_true[i, j] = 0‘, then ‘i‘th sample is not in ‘j‘th class. The
similarity matrix ‘y_pred‘ between two embedding matrices ‘a‘ and ‘b‘ with shape ‘[batch_size,
hidden_size]‘ can be computed as follows: “‘ # y_pred = a * b^T y_pred = tf.matmul(a, b, trans-
pose_a=FALSE, transpose_b=TRUE) “‘

Value

npairs_multilabel_loss: float scalar.

See

http://www.nec-labs.com/uploads/images/Department-Images/MediaAnalytics/papers/nips16_npairmetriclearning.pdf

loss_pinball Pinball loss

Description

Computes the pinball loss between ‘y_true‘ and ‘y_pred‘.

Usage

loss_pinball(
tau = 0.5,
reduction = tf$keras$losses$Reduction$AUTO,
name = "pinball_loss"

)

Arguments

tau (Optional) Float in [0, 1] or a tensor taking values in [0, 1] and shape = [d0,...,
dn]. It defines the slope of the pinball loss. In the context of quantile regression,
the value of tau determines the conditional quantile level. When tau = 0.5, this
amounts to l1 regression, an estimator of the conditional median (0.5 quantile).

reduction (Optional) Type of tf.keras.losses.Reduction to apply to loss. Default value is
AUTO. AUTO indicates that the reduction option will be determined by the us-
age context. For almost all cases this defaults to SUM_OVER_BATCH_SIZE.
When used with tf.distribute.Strategy, outside of built-in training loops such as
tf$keras compile and fit, using AUTO or SUM_OVER_BATCH_SIZE will raise
an error. Please see https://www.tensorflow.org/alpha/tutorials/distribute/training_loops
for more details on this.

loss_sequence 85

name Optional name for the op.

Details

‘loss = maximum(tau * (y_true - y_pred), (tau - 1) * (y_true - y_pred))‘ In the context of regression
this, loss yields an estimator of the tau conditional quantile. See: https://en.wikipedia.org/wiki/Quantile_regression
Usage: “‘python loss = pinball_loss([0., 0., 1., 1.], [1., 1., 1., 0.], tau=.1) # loss = max(0.1 * (y_true
- y_pred), (0.1 - 1) * (y_true - y_pred)) # = (0.9 + 0.9 + 0 + 0.1) / 4 print(’Loss: ’, loss$numpy()) #
Loss: 0.475 “‘

Value

pinball_loss: 1-D float ‘Tensor‘ with shape [batch_size].

pinball_loss: 1-D float ‘Tensor‘ with shape [batch_size].

Usage

“‘python_loss = pinball_loss([0., 0., 1., 1.], [1., 1., 1., 0.], tau=.1) ““

References

- https://en.wikipedia.org/wiki/Quantile_regression - https://projecteuclid.org/download/pdfview_1/euclid.bj/1297173840

Examples

Not run:
keras_model_sequential() %>%

layer_dense(4, input_shape = c(784)) %>%
compile(

optimizer = 'sgd',
loss=loss_pinball(),
metrics='accuracy'

)

End(Not run)

loss_sequence Weighted cross-entropy loss for a sequence of logits.

Description

Weighted cross-entropy loss for a sequence of logits.

Usage

loss_sequence(...)

86 loss_sigmoid_focal_crossentropy

Arguments

... A list of parameters

Value

None

loss_sigmoid_focal_crossentropy

Sigmoid focal crossentropy loss

Description

Sigmoid focal crossentropy loss

Usage

loss_sigmoid_focal_crossentropy(
from_logits = FALSE,
alpha = 0.25,
gamma = 2,
reduction = tf$keras$losses$Reduction$NONE,
name = "sigmoid_focal_crossentropy"

)

Arguments

from_logits If logits are provided then convert the predictions into probabilities

alpha balancing factor.

gamma modulating factor.

reduction (Optional) Type of tf$keras$losses$Reduction to apply. Default value is SUM_OVER_BATCH_SIZE.

name (Optional) name for the loss.

Value

Weighted loss float ‘Tensor‘. If ‘reduction‘ is ‘NONE‘,this has the same shape as ‘y_true‘; other-
wise, it is scalar.

Examples

Not run:
keras_model_sequential() %>%

layer_dense(4, input_shape = c(784)) %>%
compile(

optimizer = 'sgd',
loss=loss_sigmoid_focal_crossentropy(),

loss_sparsemax 87

metrics='accuracy'
)

End(Not run)

loss_sparsemax Sparsemax loss

Description

Sparsemax loss function [1].

Usage

loss_sparsemax(
from_logits = TRUE,
reduction = tf$keras$losses$Reduction$SUM_OVER_BATCH_SIZE,
name = "sparsemax_loss"

)

Arguments

from_logits Whether y_pred is expected to be a logits tensor. Default is True, meaning
y_pred is the logits.

reduction (Optional) Type of tf$keras$losses$Reduction to apply to loss. Default value is
SUM_OVER_BATCH_SIZE.

name Optional name for the op.

Details

Computes the generalized multi-label classification loss for the sparsemax function. The implemen-
tation is a reformulation of the original loss function such that it uses the sparsemax properbility
output instead of the internal au variable. However, the output is identical to the original loss func-
tion. [1]: https://arxiv.org/abs/1602.02068

Value

A ‘Tensor‘. Has the same type as ‘logits‘.

88 loss_triplet_hard

loss_triplet_hard Triplet hard loss

Description

Computes the triplet loss with hard negative and hard positive mining.

Usage

loss_triplet_hard(margin = 1, soft = FALSE, name = NULL, ...)

Arguments

margin Float, margin term in the loss definition. Default value is 1.0.

soft Boolean, if set, use the soft margin version. Default value is False.

name Optional name for the op.

... additional arguments to pass

Value

triplet_loss: float scalar with dtype of y_pred.

Examples

Not run:
model = keras_model_sequential() %>%
layer_conv_2d(filters = 64, kernel_size = 2, padding='same', input_shape=c(28,28,1)) %>%
layer_max_pooling_2d(pool_size=2) %>%
layer_flatten() %>%
layer_dense(256, activation= NULL) %>%
layer_lambda(f = function(x) tf$math$l2_normalize(x, axis = 1L))

model %>% compile(
optimizer = optimizer_lazy_adam(),
apply triplet semihard loss
loss = loss_triplet_hard())

End(Not run)

loss_triplet_semihard 89

loss_triplet_semihard Triplet semihard loss

Description

Computes the triplet loss with semi-hard negative mining.

Usage

loss_triplet_semihard(margin = 1, name = NULL, ...)

Arguments

margin Float, margin term in the loss definition. Default value is 1.0.

name Optional name for the op.

... additional arguments to pass

Value

triplet_loss: float scalar with dtype of y_pred.

Examples

Not run:
model = keras_model_sequential() %>%
layer_conv_2d(filters = 64, kernel_size = 2, padding='same', input_shape=c(28,28,1)) %>%
layer_max_pooling_2d(pool_size=2) %>%
layer_flatten() %>%
layer_dense(256, activation= NULL) %>%
layer_lambda(f = function(x) tf$math$l2_normalize(x, axis = 1L))

model %>% compile(
optimizer = optimizer_lazy_adam(),
apply triplet semihard loss
loss = loss_triplet_semihard())

End(Not run)

90 metrics_f1score

metrics_f1score F1Score

Description

Computes F-1 Score.

Usage

metrics_f1score(
num_classes,
average = NULL,
threshold = NULL,
name = "f1_score",
dtype = tf$float32

)

Arguments

num_classes Number of unique classes in the dataset.

average Type of averaging to be performed on data. Acceptable values are NULL, micro,
macro and weighted. Default value is NULL. - None: Scores for each class are
returned - micro: True positivies, false positives and false negatives are com-
puted globally. - macro: True positivies, false positives and - false negatives
are computed for each class and their unweighted mean is returned. - weighted:
Metrics are computed for each class and returns the mean weighted by the num-
ber of true instances in each class.

threshold Elements of y_pred above threshold are considered to be 1, and the rest 0. If
threshold is NULL, the argmax is converted to 1, and the rest 0.

name (optional) String name of the metric instance.

dtype (optional) Data type of the metric result. Defaults to ‘tf$float32‘.

Details

It is the harmonic mean of precision and recall. Output range is [0, 1]. Works for both multi-class
and multi-label classification. F-1 = 2 * (precision * recall) / (precision + recall)

Value

F-1 Score: float

Raises

ValueError: If the ‘average‘ has values other than [NULL, micro, macro, weighted].

metric_cohen_kappa 91

Examples

Not run:
model = keras_model_sequential() %>%
layer_dense(units = 10, input_shape = ncol(iris) - 1,activation = activation_lisht) %>%
layer_dense(units = 3)

model %>% compile(loss = 'categorical_crossentropy',
optimizer = optimizer_radam(),
metrics = metrics_f1score(3))

End(Not run)

metric_cohen_kappa Computes Kappa score between two raters

Description

Computes Kappa score between two raters

Usage

metric_cohen_kappa(
num_classes,
name = "cohen_kappa",
weightage = NULL,
sparse_labels = FALSE,
regression = FALSE,
dtype = NULL

)

Arguments

num_classes Number of unique classes in your dataset.

name (optional) String name of the metric instance

weightage (optional) Weighting to be considered for calculating kappa statistics. A valid
value is one of [None, ’linear’, ’quadratic’]. Defaults to ‘NULL‘

sparse_labels (bool) Valid only for multi-class scenario. If True, ground truth labels are ex-
pected tp be integers and not one-hot encoded

regression (bool) If set, that means the problem is being treated as a regression problem
where you are regressing the predictions. **Note:** If you are regressing for
the values, the the output layer should contain a single unit.

dtype (optional) Data type of the metric result. Defaults to ‘NULL‘

92 metric_fbetascore

Details

The score lies in the range [-1, 1]. A score of -1 represents complete disagreement between two
raters whereas a score of 1 represents complete agreement between the two raters. A score of 0
means agreement by chance.

Value

Input tensor or list of input tensors.

Examples

Not run:
model = keras_model_sequential() %>%
layer_dense(units = 10, input_shape = ncol(iris) - 1,activation = activation_lisht) %>%
layer_dense(units = 3)

model %>% compile(loss = 'categorical_crossentropy',
optimizer = optimizer_radam(),
metrics = metric_cohen_kappa(3))

End(Not run)

metric_fbetascore FBetaScore

Description

Computes F-Beta score.

Usage

metric_fbetascore(
num_classes,
average = NULL,
beta = 1,
threshold = NULL,
name = "fbeta_score",
dtype = tf$float32,
...

)

metric_hamming_distance 93

Arguments

num_classes Number of unique classes in the dataset.

average Type of averaging to be performed on data. Acceptable values are None, micro,
macro and weighted. Default value is NULL. micro, macro and weighted. De-
fault value is NULL. - None: Scores for each class are returned - micro: True
positivies, false positives and false negatives are computed globally. - macro:
True positivies, false positives and - false negatives are computed for each class
and their unweighted mean is returned. - weighted: Metrics are computed for
each class and returns the mean weighted by the number of true instances in
each class.-

beta Determines the weight of precision and recall in harmonic mean. Determines
the weight given to the precision and recall. Default value is 1.

threshold Elements of y_pred greater than threshold are converted to be 1, and the rest 0.
If threshold is None, the argmax is converted to 1, and the rest 0.

name (optional) String name of the metric instance.

dtype (optional) Data type of the metric result. Defaults to ‘tf$float32‘.

... additional parameters to pass

Details

It is the weighted harmonic mean of precision and recall. Output range is [0, 1]. Works for both
multi-class and multi-label classification. F-Beta = (1 + beta^2) * (prec * recall) / ((beta^2 * prec)
+ recall)

Value

F-Beta Score: float

Raises

ValueError: If the ‘average‘ has values other than [NULL, micro, macro, weighted].

metric_hamming_distance

Hamming distance

Description

Computes hamming distance.

Usage

metric_hamming_distance(actuals, predictions)

94 metric_mcc

Arguments

actuals actual value

predictions predicted value

Details

Hamming distance is for comparing two binary strings. It is the number of bit positions in which
two bits are different.

Value

hamming distance: float

Examples

Not run:

actuals = tf$constant(as.integer(c(1, 1, 0, 0, 1, 0, 1, 0, 0, 1)), dtype=tf$int32)
predictions = tf$constant(as.integer(c(1, 0, 0, 0, 1, 0, 0, 1, 0, 1)),dtype=tf$int32)
result = metric_hamming_distance(actuals, predictions)
paste('Hamming distance: ', result$numpy())

End(Not run)

metric_mcc MatthewsCorrelationCoefficient

Description

Computes the Matthews Correlation Coefficient.

Usage

metric_mcc(
num_classes = NULL,
name = "MatthewsCorrelationCoefficient",
dtype = tf$float32

)

Arguments

num_classes Number of unique classes in the dataset.

name (Optional) String name of the metric instance.

dtype (Optional) Data type of the metric result. Defaults to ‘tf$float32‘.

metric_multilabel_confusion_matrix 95

Details

The statistic is also known as the phi coefficient. The Matthews correlation coefficient (MCC) is
used in machine learning as a measure of the quality of binary and multiclass classifications. It takes
into account true and false positives and negatives and is generally regarded as a balanced measure
which can be used even if the classes are of very different sizes. The correlation coefficient value
of MCC is between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average
random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient.
MCC = (TP * TN) - (FP * FN) / ((TP + FP) * (TP + FN) * (TN + FP) * (TN + FN))^(1/2) Usage:

Value

Matthews correlation coefficient: float

Examples

Not run:

actuals = tf$constant(list(1, 1, 1, 0), dtype=tf$float32)
preds = tf$constant(list(1,0,1,1), dtype=tf$float32)
Matthews correlation coefficient
mcc = metric_mcc(num_classes=1)
mcc$update_state(actuals, preds)
paste('Matthews correlation coefficient is:', mcc$result()$numpy())
Matthews correlation coefficient is : -0.33333334

End(Not run)

metric_multilabel_confusion_matrix

MultiLabelConfusionMatrix

Description

Computes Multi-label confusion matrix.

Usage

metric_multilabel_confusion_matrix(
num_classes,
name = "Multilabel_confusion_matrix",
dtype = tf$int32

)

96 metric_rsquare

Arguments

num_classes Number of unique classes in the dataset.

name (Optional) String name of the metric instance.

dtype (Optional) Data type of the metric result. Defaults to ‘tf$int32‘.

Details

Class-wise confusion matrix is computed for the evaluation of classification. If multi-class in-
put is provided, it will be treated as multilabel data. Consider classification problem with two
classes (i.e num_classes=2). Resultant matrix ‘M‘ will be in the shape of (num_classes, 2, 2).
Every class ‘i‘ has a dedicated 2*2 matrix that contains: - true negatives for class i in M(0,0) -
false positives for class i in M(0,1) - false negatives for class i in M(1,0) - true positives for class
i in M(1,1) “‘python # multilabel confusion matrix y_true = tf$constant(list(as.integer(c(1, 0, 1)),
as.integer(c(0, 1, 0))), dtype=tf$int32) y_pred = tf$constant(list(as.integer(c(1, 0, 0)), as.integer(c(0,
1, 1))), dtype=tf$int32) output = metric_multilabel_confusion_matrix(num_classes=3) output$update_state(y_true,
y_pred) paste(’Confusion matrix:’, output$result()) # Confusion matrix: [[[1 0] [0 1]] [[1 0] [0
1]] [[0 1] [1 0]]] # if multiclass input is provided y_true = tf$constant(list(as.integer(c(1, 0, 0)),
as.integer(c(0, 1, 0))), dtype=tf$int32) y_pred = tf$constant(list(as.integer(c(1, 0, 0)), as.integer(c(0,
0, 1))), dtype=tf$int32) output = metric_multilabel_confusion_matrix(num_classes=3) output$update_state(y_true,
y_pred) paste(’Confusion matrix:’, output$result()) # Confusion matrix: [[[1 0] [0 1]] [[1 0] [1 0]]
[[1 1] [0 0]]] “‘

Value

MultiLabelConfusionMatrix: float

metric_rsquare RSquare This is also called as coefficient of determination. It tells how
close are data to the fitted regression line. Highest score can be 1.0
and it indicates that the predictors perfectly accounts for variation in
the target. Score 0.0 indicates that the predictors do not account for
variation in the target. It can also be negative if the model is worse.

Description

RSquare

This is also called as coefficient of determination. It tells how close are data to the fitted regression
line. Highest score can be 1.0 and it indicates that the predictors perfectly accounts for variation in
the target. Score 0.0 indicates that the predictors do not account for variation in the target. It can
also be negative if the model is worse.

optimizer_conditional_gradient 97

Usage

metric_rsquare(
name = "r_square",
dtype = tf$float32,
multioutput = "uniform_average",
y_shape = 1,
...

)

Arguments

name (Optional) String name of the metric instance.

dtype (Optional) Data type of the metric result. Defaults to ‘tf$float32‘.

multioutput one of the following: "raw_values", "uniform_average", "variance_weighted"

y_shape output tensor shape

... additional arguments to pass

Value

r squared score: float

Examples

Not run:

actuals = tf$constant(c(1, 4, 3), dtype=tf$float32)
preds = tf$constant(c(2, 4, 4), dtype=tf$float32)
result = metric_rsquare()
result$update_state(actuals, preds)
paste('R^2 score is: ', result$result()$numpy()) # 0.57142866

End(Not run)

optimizer_conditional_gradient

Conditional Gradient

Description

Conditional Gradient

98 optimizer_decay_adamw

Usage

optimizer_conditional_gradient(
learning_rate,
lambda_,
epsilon = 1e-07,
use_locking = FALSE,
name = "ConditionalGradient",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

Arguments

learning_rate A Tensor or a floating point value, or a schedule that is a tf$keras$optimizers$schedules$LearningRateSchedule
The learning rate.

lambda_ A Tensor or a floating point value. The constraint.

epsilon A Tensor or a floating point value. A small constant for numerical stability when
handling the case of norm of gradient to be zero.

use_locking If True, use locks for update operations.

name Optional name prefix for the operations created when applying gradients. De-
faults to ’ConditionalGradient’.

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Value

Optimizer for use with ‘keras::compile()‘

optimizer_decay_adamw Optimizer that implements the Adam algorithm with weight decay

Description

This is an implementation of the AdamW optimizer described in "Decoupled Weight Decay Regu-
larization" by Loshchilov & Hutter (https://arxiv.org/abs/1711.05101) ([pdf])(https://arxiv.org/pdf/1711.05101.pdf).
It computes the update step of tf.keras.optimizers.Adam and additionally decays the variable. Note
that this is different from adding L2 regularization on the variables to the loss: it regularizes vari-
ables with large gradients more than L2 regularization would, which was shown to yield better
training loss and generalization error in the paper above.

optimizer_decay_adamw 99

Usage

optimizer_decay_adamw(
weight_decay,
learning_rate = 0.001,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = 1e-07,
amsgrad = FALSE,
name = "AdamW",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

Arguments

weight_decay A Tensor or a floating point value. The weight decay.

learning_rate A Tensor or a floating point value. The learning rate.

beta_1 A float value or a constant float tensor. The exponential decay rate for the 1st
moment estimates.

beta_2 A float value or a constant float tensor. The exponential decay rate for the 2nd
moment estimates.

epsilon A small constant for numerical stability. This epsilon is "epsilon hat" in the
Kingma and Ba paper (in the formula just before Section 2.1), not the epsilon in
Algorithm 1 of the paper.

amsgrad boolean. Whether to apply AMSGrad variant of this algorithm from the paper
"On the Convergence of Adam and beyond".

name Optional name for the operations created when applying

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Value

Optimizer for use with ‘keras::compile()‘

Examples

Not run:

step = tf$Variable(0L, trainable = FALSE)
schedule = tf$optimizers$schedules$PiecewiseConstantDecay(list(c(10000, 15000)),

100 optimizer_decay_sgdw

list(c(1e-0, 1e-1, 1e-2)))
lr = 1e-1 * schedule(step)
wd = lambda: 1e-4 * schedule(step)

End(Not run)

optimizer_decay_sgdw Optimizer that implements the Momentum algorithm with
weight_decay

Description

This is an implementation of the SGDW optimizer described in "Decoupled Weight Decay Regular-
ization" by Loshchilov & Hutter (https://arxiv.org/abs/1711.05101) ([pdf])(https://arxiv.org/pdf/1711.05101.pdf).
It computes the update step of tf.keras.optimizers.SGD and additionally decays the variable. Note
that this is different from adding L2 regularization on the variables to the loss. Decoupling the
weight decay from other hyperparameters (in particular the learning rate) simplifies hyperparame-
ter search. For further information see the documentation of the SGD Optimizer.

Usage

optimizer_decay_sgdw(
weight_decay,
learning_rate = 0.001,
momentum = 0,
nesterov = FALSE,
name = "SGDW",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

Arguments

weight_decay weight decay rate.

learning_rate float hyperparameter >= 0. Learning rate.

momentum float hyperparameter >= 0 that accelerates SGD in the relevant direction and
dampens oscillations.

nesterov boolean. Whether to apply Nesterov momentum.

name Optional name prefix for the operations created when applying gradients. De-
faults to ’SGD’.

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

optimizer_lamb 101

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Value

Optimizer for use with ‘keras::compile()‘

Examples

Not run:

step = tf$Variable(0L, trainable = FALSE)
schedule = tf$optimizers$schedules$PiecewiseConstantDecay(list(c(10000, 15000)),
list(c(1e-0, 1e-1, 1e-2)))
lr = 1e-1 * schedule(step)
wd = lambda: 1e-4 * schedule(step)

End(Not run)

optimizer_lamb Layer-wise Adaptive Moments

Description

Layer-wise Adaptive Moments

Usage

optimizer_lamb(
learning_rate = 0.001,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = 1e-06,
weight_decay_rate = 0,
exclude_from_weight_decay = NULL,
exclude_from_layer_adaptation = NULL,
name = "LAMB",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

102 optimizer_lamb

Arguments

learning_rate A ‘Tensor‘ or a floating point value. or a schedule that is a ‘tf$keras$optimizers$schedules$LearningRateSchedule‘
The learning rate.

beta_1 A ‘float‘ value or a constant ‘float‘ tensor. The exponential decay rate for the 1st
moment estimates.

beta_2 A ‘float‘ value or a constant ‘float‘ tensor. The exponential decay rate for the
2nd moment estimates.

epsilon A small constant for numerical stability.
weight_decay_rate

weight decay rate.
exclude_from_weight_decay

List of regex patterns of variables excluded from weight decay. Variables whose
name contain a substring matching the pattern will be excluded.

exclude_from_layer_adaptation

List of regex patterns of variables excluded from layer adaptation. Variables
whose name contain a substring matching the pattern will be excluded.

name Optional name for the operations created when applying gradients. Defaults to
"LAMB".

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Value

Optimizer for use with ‘keras::compile()‘

Examples

Not run:
keras_model_sequential() %>%

layer_dense(32, input_shape = c(784)) %>%
compile(

optimizer = optimizer_lamb(),
loss='binary_crossentropy',
metrics='accuracy'

)

End(Not run)

optimizer_lazy_adam 103

optimizer_lazy_adam Lazy Adam

Description

Lazy Adam

Usage

optimizer_lazy_adam(
learning_rate = 0.001,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = 1e-07,
amsgrad = FALSE,
name = "LazyAdam",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

Arguments

learning_rate A Tensor or a floating point value. or a schedule that is a tf.keras.optimizers.schedules.LearningRateSchedule
The learning rate.

beta_1 A float value or a constant float tensor. The exponential decay rate for the 1st
moment estimates.

beta_2 A float value or a constant float tensor. The exponential decay rate for the 2nd
moment estimates.

epsilon A small constant for numerical stability. This epsilon is "epsilon hat" in Adam:
A Method for Stochastic Optimization. Kingma et al., 2014 (in the formula just
before Section 2.1), not the epsilon in Algorithm 1 of the paper.

amsgrad boolean. Whether to apply AMSGrad variant of this algorithm from the paper
"On the Convergence of Adam and beyond". Note that this argument is currently
not supported and the argument can only be False.

name Optional name for the operations created when applying gradients. Defaults to
"LazyAdam".

clipnorm is clip gradients by norm;

clipvalue is clip gradients by value,

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

104 optimizer_moving_average

Value

Optimizer for use with ‘keras::compile()‘

Examples

Not run:
keras_model_sequential() %>%

layer_dense(32, input_shape = c(784)) %>%
compile(
optimizer = optimizer_lazy_adam(),
loss='binary_crossentropy',
metrics='accuracy'

)

End(Not run)

optimizer_moving_average

Moving Average

Description

Moving Average

Usage

optimizer_moving_average(
optimizer,
sequential_update = TRUE,
average_decay = 0.99,
num_updates = NULL,
name = "MovingAverage",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

Arguments

optimizer str or tf$keras$optimizers$Optimizer that will be used to compute and apply
gradients.

sequential_update

Bool. If False, will compute the moving average at the same time as the model
is updated, potentially doing benign data races. If True, will update the moving
average after gradient updates.

optimizer_novograd 105

average_decay float. Decay to use to maintain the moving averages of trained variables.

num_updates Optional count of the number of updates applied to variables.

name Optional name for the operations created when applying gradients. Defaults to
"MovingAverage".

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Details

Optimizer that computes a moving average of the variables. Empirically it has been found that us-
ing the moving average of the trained parameters of a deep network is better than using its trained
parameters directly. This optimizer allows you to compute this moving average and swap the vari-
ables at save time so that any code outside of the training loop will use by default the average values
instead of the original ones.

Value

Optimizer for use with ‘keras::compile()‘

Examples

Not run:

opt = tf$keras$optimizers$SGD(learning_rate)
opt = moving_average(opt)

End(Not run)

optimizer_novograd NovoGrad

Description

NovoGrad

106 optimizer_novograd

Usage

optimizer_novograd(
learning_rate = 0.001,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = 1e-07,
weight_decay = 0,
grad_averaging = FALSE,
amsgrad = FALSE,
name = "NovoGrad",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

Arguments

learning_rate A ‘Tensor‘ or a floating point value. or a schedule that is a ‘tf$keras$optimizers$schedules$LearningRateSchedule‘
The learning rate.

beta_1 A float value or a constant float tensor. The exponential decay rate for the 1st
moment estimates.

beta_2 A float value or a constant float tensor. The exponential decay rate for the 2nd
moment estimates.

epsilon A small constant for numerical stability.

weight_decay A floating point value. Weight decay for each param.

grad_averaging determines whether to use Adam style exponential moving averaging for the first
order moments.

amsgrad boolean. Whether to apply AMSGrad variant of this algorithm from the paper
"On the Convergence of Adam and beyond"

name Optional name for the operations created when applying gradients. Defaults to
"NovoGrad".

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Value

Optimizer for use with ‘keras::compile()‘

optimizer_radam 107

Examples

Not run:
keras_model_sequential() %>%

layer_dense(32, input_shape = c(784)) %>%
compile(
optimizer = optimizer_novograd(),
loss='binary_crossentropy',
metrics='accuracy'

)

End(Not run)

optimizer_radam Rectified Adam (a.k.a. RAdam)

Description

Rectified Adam (a.k.a. RAdam)

Usage

optimizer_radam(
learning_rate = 0.001,
beta_1 = 0.9,
beta_2 = 0.999,
epsilon = 1e-07,
weight_decay = 0,
amsgrad = FALSE,
sma_threshold = 5,
total_steps = 0,
warmup_proportion = 0.1,
min_lr = 0,
name = "RectifiedAdam",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

Arguments

learning_rate A ‘Tensor‘ or a floating point value. or a schedule that is a ‘tf$keras$optimizers$schedules$LearningRateSchedule‘
The learning rate.

beta_1 A float value or a constant float tensor. The exponential decay rate for the 1st
moment estimates.

108 optimizer_swa

beta_2 A float value or a constant float tensor. The exponential decay rate for the 2nd
moment estimates.

epsilon A small constant for numerical stability.

weight_decay A floating point value. Weight decay for each param.

amsgrad boolean. Whether to apply AMSGrad variant of this algorithm from the paper
"On the Convergence of Adam and beyond".

sma_threshold A float value. The threshold for simple mean average.

total_steps An integer. Total number of training steps. Enable warmup by setting a positive
value.

warmup_proportion

A floating point value. The proportion of increasing steps.

min_lr A floating point value. Minimum learning rate after warmup.

name Optional name for the operations created when applying gradients. Defaults to
"RectifiedAdam".

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Value

Optimizer for use with ‘keras::compile()‘

optimizer_swa Stochastic Weight Averaging

Description

Stochastic Weight Averaging

Usage

optimizer_swa(
optimizer,
start_averaging = 0,
average_period = 10,
name = "SWA",
sequential_update = TRUE,
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

optimizer_swa 109

Arguments

optimizer The original optimizer that will be used to compute and apply the gradients.
start_averaging

An integer. Threshold to start averaging using SWA. Averaging only occurs at
start_averaging iters, must be >= 0. If start_averaging = m, the first snapshot
will be taken after the mth application of gradients (where the first iteration is
iteration 0).

average_period An integer. The synchronization period of SWA. The averaging occurs every
average_period steps. Averaging period needs to be >= 1.

name Optional name for the operations created when applying gradients. Defaults to
’SWA’.

sequential_update

Bool. If FALSE, will compute the moving average at the same time as the model
is updated, potentially doing benign data races. If True, will update the moving
average after gradient updates

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Details

The Stochastic Weight Averaging mechanism was proposed by Pavel Izmailov et. al in the paper
[Averaging Weights Leads to Wider Optima and Better Generalization](https://arxiv.org/abs/1803.05407).
The optimizer implements averaging of multiple points along the trajectory of SGD. The optimizer
expects an inner optimizer which will be used to apply the gradients to the variables and itself com-
putes a running average of the variables every k steps (which generally corresponds to the end of
a cycle when a cyclic learning rate is employed). We also allow the specification of the number of
steps averaging should first happen after. Let’s say, we want averaging to happen every k steps after
the first m steps. After step m we’d take a snapshot of the variables and then average the weights
appropriately at step m + k, m + 2k and so on. The assign_average_vars function can be called at
the end of training to obtain the averaged_weights from the optimizer.

Value

Optimizer for use with ‘keras::compile()‘

Examples

Not run:
opt = tf$keras$optimizers$SGD(learning_rate)
opt = optimizer_swa(opt, start_averaging=m, average_period=k)

End(Not run)

110 optimizer_yogi

optimizer_yogi Yogi

Description

Yogi

Usage

optimizer_yogi(
learning_rate = 0.01,
beta1 = 0.9,
beta2 = 0.999,
epsilon = 0.001,
l1_regularization_strength = 0,
l2_regularization_strength = 0,
initial_accumulator_value = 1e-06,
activation = "sign",
name = "Yogi",
clipnorm = NULL,
clipvalue = NULL,
decay = NULL,
lr = NULL

)

Arguments

learning_rate A Tensor or a floating point value. The learning rate.

beta1 A float value or a constant float tensor. The exponential decay rate for the 1st
moment estimates.

beta2 A float value or a constant float tensor. The exponential decay rate for the 2nd
moment estimates.

epsilon A constant trading off adaptivity and noise.
l1_regularization_strength

A float value, must be greater than or equal to zero.
l2_regularization_strength

A float value, must be greater than or equal to zero.
initial_accumulator_value

The starting value for accumulators. Only positive values are allowed.

activation Use hard sign or soft tanh to determin sign.

name Optional name for the operations created when applying gradients. Defaults to
"Yogi".

clipnorm is clip gradients by norm.

clipvalue is clip gradients by value.

parse_time 111

decay is included for backward compatibility to allow time inverse decay of learning
rate.

lr is included for backward compatibility, recommended to use learning_rate in-
stead.

Value

Optimizer for use with ‘keras::compile()‘

parse_time Parse time

Description

Parse an input string according to the provided format string into a

Usage

parse_time(time_string, time_format, output_unit)

Arguments

time_string The input time string to be parsed.

time_format The time format.

output_unit The output unit of the parsed unix time. Can only be SECOND, MILLISEC-
OND, MICROSECOND, NANOSECOND.

Details

Unix time. Parse an input string according to the provided format string into a Unix time, the
number of seconds / milliseconds / microseconds / nanoseconds elapsed since January 1, 1970
UTC. Uses strftime()-like formatting options, with the same extensions as FormatTime(), but with
the exceptions that characters as it can, so the matching data should always be terminated with a
non-numeric. consumes exactly four characters, including any sign. Unspecified fields are taken
from the default date and time of ... "1970-01-01 00:00:00.0 +0000" For example, parsing a string
of "15:45" (Unix time that represents "1970-01-01 15:45:00.0 +0000". Note that ParseTime only
heeds the fields year, month, day, hour, minute, (fractional) second, and UTC offset. Other fields,
like weekday (ignored in the conversion. Date and time fields that are out-of-range will be treated
as errors rather than normalizing them like ‘absl::CivilSecond‘ does. For example, it is an error to
parse the date "Oct 32, 2013" because 32 is out of range. A leap second of ":60" is normalized to
":00" of the following minute with fractional seconds discarded. The following table shows how the
given seconds and subseconds will be parsed: "59.x" -> 59.x // exact "60.x" -> 00.0 // normalized
"00.x" -> 00.x // exact

Value

the number of seconds / milliseconds / microseconds / nanoseconds elapsed since January 1, 1970
UTC.

112 register_all

Raises

ValueError: If ‘output_unit‘ is not a valid value, if parsing ‘time_string‘ according to ‘time_format‘
failed.

register_all Register all

Description

Register TensorFlow Addons’ objects in TensorFlow global dictionaries.

Usage

register_all(keras_objects = TRUE, custom_kernels = TRUE)

Arguments

keras_objects boolean, ‘TRUE‘ by default. If ‘TRUE‘, register all Keras objects with ‘tf$keras$utils$register_keras_serializable(package="Addons")‘
If set to FALSE, doesn’t register any Keras objects of Addons in TensorFlow.

custom_kernels boolean, ‘TRUE‘ by default. If ‘TRUE‘, loads all custom kernels of TensorFlow
Addons with ‘tf.load_op_library("path/to/so/file.so")‘. Loading the SO files reg-
ister them automatically. If ‘FALSE‘ doesn’t load and register the shared objects
files. Not that it might be useful to turn it off if your installation of Addons
doesn’t work well with custom ops.

Details

When loading a Keras model that has a TF Addons’ function, it is needed for this function to be
known by the Keras deserialization process. There are two ways to do this, either do “‘ tf$keras$models$load_model(
"my_model.tf", custom_objects=list("LAMB": tfaddons::optimizer_lamb)) “‘ or you can do: “‘python
register_all() tf$keras$models$load_model("my_model.tf") “‘ If the model contains custom ops
(compiled ops) of TensorFlow Addons, and the graph is loaded with ‘tf$saved_model$load‘, then
custom ops need to be registered before to avoid an error of the type: “‘ tensorflow.python.framework.errors_impl.NotFoundError:
Op type not registered ’...’ in binary running on ... Make sure the Op and Kernel are registered in the
binary running in this process. “‘ In this case, the only way to make sure that the ops are registered
is to call this function: “‘ register_all() tf$saved_model$load("my_model.tf") “‘ Note that you can
call this function multiple times in the same process, it only has an effect the first time. Afterward,
it’s just a no-op.

Value

None

register_custom_kernels 113

register_custom_kernels

Register custom kernels

Description

Register custom kernels

Usage

register_custom_kernels(...)

Arguments

... parameters to pass

Value

None

register_keras_objects

Register keras objects

Description

Register keras objects

Usage

register_keras_objects(...)

Arguments

... parameters to pass

Value

None

114 sampler

safe_cumprod Safe cumprod

Description

Computes cumprod of x in logspace using cumsum to avoid underflow.

Usage

safe_cumprod(x, ...)

Arguments

x Tensor to take the cumulative product of.

... Passed on to cumsum; these are identical to those in cumprod

Details

The cumprod function and its gradient can result in numerical instabilities when its argument has
very small and/or zero values. As long as the argument is all positive, we can instead compute the
cumulative product as exp(cumsum(log(x))). This function can be called identically to tf$cumprod.

Value

Cumulative product of x.

sampler Sampler

Description

Interface for implementing sampling in seq2seq decoders.

Usage

sampler(...)

Arguments

... parametr to pass batch_size, initialize, next_inputs, sample, sample_ids_dtype,
sample_ids_shape

Value

None

sampler_custom 115

sampler_custom Base abstract class that allows the user to customize sampling.

Description

Base abstract class that allows the user to customize sampling.

Usage

sampler_custom(
initialize_fn,
sample_fn,
next_inputs_fn,
sample_ids_shape = NULL,
sample_ids_dtype = NULL

)

Arguments

initialize_fn callable that returns (finished, next_inputs) for the first iteration.

sample_fn callable that takes (time, outputs, state) and emits tensor sample_ids.

next_inputs_fn callable that takes (time, outputs, state, sample_ids) and emits (finished, next_inputs,
next_state).

sample_ids_shape

Either a list of integers, or a 1-D Tensor of type int32, the shape of each value in
the sample_ids batch. Defaults to a scalar.

sample_ids_dtype

The dtype of the sample_ids tensor. Defaults to int32.

Value

None

sampler_greedy_embedding

Greedy Embedding Sampler

Description

A sampler for use during inference.

Usage

sampler_greedy_embedding(embedding_fn = NULL)

116 sampler_inference

Arguments

embedding_fn A optional callable that takes a vector tensor of ids (argmax ids), or the params
argument for embedding_lookup. The returned tensor will be passed to the de-
coder input. Default to use tfnnembedding_lookup.

Details

Uses the argmax of the output (treated as logits) and passes the result through an embedding layer
to get the next input.

Value

None

sampler_inference Inference Sampler

Description

Inference Sampler

Usage

sampler_inference(
sample_fn,
sample_shape,
sample_dtype = tf$int32,
end_fn,
next_inputs_fn = NULL,
...

)

Arguments

sample_fn A callable that takes outputs and emits tensor sample_ids.

sample_shape Either a list of integers, or a 1-D Tensor of type int32, the shape of the each
sample in the batch returned by sample_fn.

sample_dtype the dtype of the sample returned by sample_fn.

end_fn A callable that takes sample_ids and emits a bool vector shaped [batch_size]
indicating whether each sample is an end token.

next_inputs_fn (Optional) A callable that takes sample_ids and returns the next batch of inputs.
If not provided, sample_ids is used as the next batch of inputs.

... A list that contains other common arguments for layer creation.

sampler_sample_embedding 117

Details

A helper to use during inference with a custom sampling function.

Value

None

sampler_sample_embedding

Sample Embedding Sampler

Description

A sampler for use during inference.

Usage

sampler_sample_embedding(
embedding_fn = NULL,
softmax_temperature = NULL,
seed = NULL

)

Arguments

embedding_fn (Optional) A callable that takes a vector tensor of ids (argmax ids), or the params
argument for embedding_lookup. The returned tensor will be passed to the de-
coder input.

softmax_temperature

(Optional) float32 scalar, value to divide the logits by before computing the soft-
max. Larger values (above 1.0) result in more random samples, while smaller
values push the sampling distribution towards the argmax. Must be strictly
greater than 0. Defaults to 1.0.

seed (Optional) The sampling seed.

Details

Uses sampling (from a distribution) instead of argmax and passes the result through an embedding
layer to get the next input.

Value

None

118 sampler_scheduled_output_training

sampler_scheduled_embedding_training

A training sampler that adds scheduled sampling

Description

A training sampler that adds scheduled sampling

Usage

sampler_scheduled_embedding_training(
sampling_probability,
embedding_fn = NULL,
time_major = FALSE,
seed = NULL,
scheduling_seed = NULL

)

Arguments

sampling_probability

A float32 0-D or 1-D tensor: the probability of sampling categorically from the
output ids instead of reading directly from the inputs.

embedding_fn A callable that takes a vector tensor of ids (argmax ids), or the params argument
for embedding_lookup.

time_major bool. Whether the tensors in inputs are time major. If ‘FALSE‘ (default), they
are assumed to be batch major.

seed The sampling seed.
scheduling_seed

The schedule decision rule sampling seed.

Value

Returns -1s for sample_ids where no sampling took place; valid sample id values elsewhere.

sampler_scheduled_output_training

Scheduled Output Training Sampler

Description

A training sampler that adds scheduled sampling directly to outputs.

sampler_training 119

Usage

sampler_scheduled_output_training(
sampling_probability,
time_major = FALSE,
seed = NULL,
next_inputs_fn = NULL

)

Arguments

sampling_probability

A float32 scalar tensor: the probability of sampling from the outputs instead of
reading directly from the inputs.

time_major bool. Whether the tensors in inputs are time major. If False (default), they are
assumed to be batch major.

seed The sampling seed.

next_inputs_fn (Optional) callable to apply to the RNN outputs to create the next input when
sampling. If None (default), the RNN outputs will be used as the next inputs.

Value

FALSE for sample_ids where no sampling took place; TRUE elsewhere.

sampler_training A Sampler for use during training.

Description

Only reads inputs.

Usage

sampler_training(time_major = FALSE)

Arguments

time_major bool. Whether the tensors in inputs are time major. If ‘FALSE‘ (default), they
are assumed to be batch major.

Value

None

120 sample_categorical

sample_bernoulli Bernoulli sample

Description

Samples from Bernoulli distribution.

Usage

sample_bernoulli(
probs = NULL,
logits = NULL,
dtype = tf$int32,
sample_shape = list(),
seed = NULL

)

Arguments

probs probabilities

logits logits

dtype the data type

sample_shape a list/vector of integers

seed integer, random seed

Value

a Tensor

sample_categorical Categorical sample

Description

Samples from categorical distribution.

Usage

sample_categorical(
logits,
dtype = tf$int32,
sample_shape = list(),
seed = NULL

)

skip_gram_sample 121

Arguments

logits logits

dtype dtype

sample_shape the shape of sample

seed random seed: integer

Value

a Tensor

skip_gram_sample Skip gram sample

Description

Generates skip-gram token and label paired Tensors from the input

Usage

skip_gram_sample(
input_tensor,
min_skips = 1,
max_skips = 5,
start = 0,
limit = -1,
emit_self_as_target = FALSE,
vocab_freq_table = NULL,
vocab_min_count = NULL,
vocab_subsampling = NULL,
corpus_size = NULL,
batch_size = NULL,
batch_capacity = NULL,
seed = NULL,
name = NULL

)

Arguments

input_tensor A rank-1 ‘Tensor‘ from which to generate skip-gram candidates.

min_skips ‘int‘ or scalar ‘Tensor‘ specifying the minimum window size to randomly use for
each token. Must be >= 0 and <= ‘max_skips‘. If ‘min_skips‘ and ‘max_skips‘
are both 0, the only label outputted will be the token itself when ‘emit_self_as_target
= TRUE‘ - or no output otherwise.

max_skips ‘int‘ or scalar ‘Tensor‘ specifying the maximum window size to randomly use
for each token. Must be >= 0.

122 skip_gram_sample

start ‘int‘ or scalar ‘Tensor‘ specifying the position in ‘input_tensor‘ from which to
start generating skip-gram candidates.

limit ‘int‘ or scalar ‘Tensor‘ specifying the maximum number of elements in ‘in-
put_tensor‘ to use in generating skip-gram candidates. -1 means to use the rest
of the ‘Tensor‘ after ‘start‘.

emit_self_as_target

‘bool‘ or scalar ‘Tensor‘ specifying whether to emit each token as a label for
itself.

vocab_freq_table

(Optional) A lookup table (subclass of ‘lookup.InitializableLookupTableBase‘)
that maps tokens to their raw frequency counts. If specified, any token in
‘input_tensor‘ that is not found in ‘vocab_freq_table‘ will be filtered out be-
fore generating skip-gram candidates. While this will typically map to integer
raw frequency counts, it could also map to float frequency proportions. ‘vo-
cab_min_count‘ and ‘corpus_size‘ should be in the same units as this.

vocab_min_count

(Optional) ‘int‘, ‘float‘, or scalar ‘Tensor‘ specifying minimum frequency thresh-
old (from ‘vocab_freq_table‘) for a token to be kept in ‘input_tensor‘. If this is
specified, ‘vocab_freq_table‘ must also be specified - and they should both be in
the same units.

vocab_subsampling

(Optional) ‘float‘ specifying frequency proportion threshold for tokens from ‘in-
put_tensor‘. Tokens that occur more frequently (based on the ratio of the token’s
‘vocab_freq_table‘ value to the ‘corpus_size‘) will be randomly down-sampled.
Reasonable starting values may be around 1e-3 or 1e-5. If this is specified,
both ‘vocab_freq_table‘ and ‘corpus_size‘ must also be specified. See Eq. 5 in
http://arxiv.org/abs/1310.4546 for more details.

corpus_size (Optional) ‘int‘, ‘float‘, or scalar ‘Tensor‘ specifying the total number of to-
kens in the corpus (e.g., sum of all the frequency counts of ‘vocab_freq_table‘).
Used with ‘vocab_subsampling‘ for down-sampling frequently occurring to-
kens. If this is specified, ‘vocab_freq_table‘ and ‘vocab_subsampling‘ must
also be specified.

batch_size (Optional) ‘int‘ specifying batch size of returned ‘Tensors‘.

batch_capacity (Optional) ‘int‘ specifying batch capacity for the queue used for batching re-
turned ‘Tensors‘. Only has an effect if ‘batch_size‘ > 0. Defaults to 100 *
‘batch_size‘ if not specified.

seed (Optional) ‘int‘ used to create a random seed for window size and subsampling.
See ‘set_random_seed‘ docs for behavior.

name (Optional) A ‘string‘ name or a name scope for the operations.

Details

tensor. Generates skip-gram ‘("token", "label")‘ pairs using each element in the rank-1 ‘input_tensor‘
as a token. The window size used for each token will be randomly selected from the range spec-
ified by ‘[min_skips, max_skips]‘, inclusive. See https://arxiv.org/abs/1301.3781 for more details
about skip-gram. For example, given ‘input_tensor = ["the", "quick", "brown", "fox", "jumps"]‘,
‘min_skips = 1‘, ‘max_skips = 2‘, ‘emit_self_as_target = FALSE‘, the output ‘(tokens, labels)‘

skip_gram_sample_with_text_vocab 123

pairs for the token "quick" will be randomly selected from either ‘(tokens=["quick", "quick"], la-
bels=["the", "brown"])‘ for 1 skip, or ‘(tokens=["quick", "quick", "quick"], labels=["the", "brown",
"fox"])‘ for 2 skips. If ‘emit_self_as_target = TRUE‘, each token will also be emitted as a label for
itself. From the previous example, the output will be either ‘(tokens=["quick", "quick", "quick"],
labels=["the", "quick", "brown"])‘ for 1 skip, or ‘(tokens=["quick", "quick", "quick", "quick"], la-
bels=["the", "quick", "brown", "fox"])‘ for 2 skips. The same process is repeated for each element
of ‘input_tensor‘ and concatenated together into the two output rank-1 ‘Tensors‘ (one for all the
tokens, another for all the labels). If ‘vocab_freq_table‘ is specified, tokens in ‘input_tensor‘ that
are not present in the vocabulary are discarded. Tokens whose frequency counts are below ‘vo-
cab_min_count‘ are also discarded. Tokens whose frequency proportions in the corpus exceed
‘vocab_subsampling‘ may be randomly down-sampled. See Eq. 5 in http://arxiv.org/abs/1310.4546
for more details about subsampling. Due to the random window sizes used for each token, the
lengths of the outputs are non-deterministic, unless ‘batch_size‘ is specified to batch the outputs to
always return ‘Tensors‘ of length ‘batch_size‘.

Value

A ‘list‘ containing (token, label) ‘Tensors‘. Each output ‘Tensor‘ is of rank-1 and has the same type
as ‘input_tensor‘. The ‘Tensors‘ will be of length ‘batch_size‘; if ‘batch_size‘ is not specified, they
will be of random length, though they will be in sync with each other as long as they are evaluated
together.

Raises

ValueError: If ‘vocab_freq_table‘ is not provided, but ‘vocab_min_count‘, ‘vocab_subsampling‘,
or ‘corpus_size‘ is specified. If ‘vocab_subsampling‘ and ‘corpus_size‘ are not both present or both
absent.

skip_gram_sample_with_text_vocab

Skip gram sample with text vocab

Description

Skip-gram sampling with a text vocabulary file.

Usage

skip_gram_sample_with_text_vocab(
input_tensor,
vocab_freq_file,
vocab_token_index = 0,
vocab_token_dtype = tf$string,
vocab_freq_index = 1,
vocab_freq_dtype = tf$float64,
vocab_delimiter = ",",
vocab_min_count = NULL,

124 skip_gram_sample_with_text_vocab

vocab_subsampling = NULL,
corpus_size = NULL,
min_skips = 1,
max_skips = 5,
start = 0,
limit = -1,
emit_self_as_target = FALSE,
batch_size = NULL,
batch_capacity = NULL,
seed = NULL,
name = NULL

)

Arguments

input_tensor A rank-1 ‘Tensor‘ from which to generate skip-gram candidates.

vocab_freq_file

‘string‘ specifying full file path to the text vocab file.

vocab_token_index

‘int‘ specifying which column in the text vocab file contains the tokens.

vocab_token_dtype

‘DType‘ specifying the format of the tokens in the text vocab file.

vocab_freq_index

‘int‘ specifying which column in the text vocab file contains the frequency
counts of the tokens.

vocab_freq_dtype

‘DType‘ specifying the format of the frequency counts in the text vocab file.

vocab_delimiter

‘string‘ specifying the delimiter used in the text vocab file.

vocab_min_count

‘int‘, ‘float‘, or scalar ‘Tensor‘ specifying minimum frequency threshold (from
‘vocab_freq_file‘) for a token to be kept in ‘input_tensor‘. This should corre-
spond with ‘vocab_freq_dtype‘.

vocab_subsampling

(Optional) ‘float‘ specifying frequency proportion threshold for tokens from
‘input_tensor‘. Tokens that occur more frequently will be randomly down-
sampled. Reasonable starting values may be around 1e-3 or 1e-5. See Eq. 5
in http://arxiv.org/abs/1310.4546 for more details.

corpus_size (Optional) ‘int‘, ‘float‘, or scalar ‘Tensor‘ specifying the total number of tokens
in the corpus (e.g., sum of all the frequency counts of ‘vocab_freq_file‘). Used
with ‘vocab_subsampling‘ for down-sampling frequently occurring tokens. If
this is specified, ‘vocab_freq_file‘ and ‘vocab_subsampling‘ must also be spec-
ified. If ‘corpus_size‘ is needed but not supplied, then it will be calculated from
‘vocab_freq_file‘. You might want to supply your own value if you have al-
ready eliminated infrequent tokens from your vocabulary files (where frequency

skip_gram_sample_with_text_vocab 125

< vocab_min_count) to save memory in the internal token lookup table. Other-
wise, the unused tokens’ variables will waste memory. The user-supplied ‘cor-
pus_size‘ value must be greater than or equal to the sum of all the frequency
counts of ‘vocab_freq_file‘.

min_skips ‘int‘ or scalar ‘Tensor‘ specifying the minimum window size to randomly use for
each token. Must be >= 0 and <= ‘max_skips‘. If ‘min_skips‘ and ‘max_skips‘
are both 0, the only label outputted will be the token itself.

max_skips ‘int‘ or scalar ‘Tensor‘ specifying the maximum window size to randomly use
for each token. Must be >= 0.

start ‘int‘ or scalar ‘Tensor‘ specifying the position in ‘input_tensor‘ from which to
start generating skip-gram candidates.

limit ‘int‘ or scalar ‘Tensor‘ specifying the maximum number of elements in ‘in-
put_tensor‘ to use in generating skip-gram candidates. -1 means to use the rest
of the ‘Tensor‘ after ‘start‘.

emit_self_as_target

‘bool‘ or scalar ‘Tensor‘ specifying whether to emit each token as a label for
itself.

batch_size (Optional) ‘int‘ specifying batch size of returned ‘Tensors‘.
batch_capacity (Optional) ‘int‘ specifying batch capacity for the queue used for batching re-

turned ‘Tensors‘. Only has an effect if ‘batch_size‘ > 0. Defaults to 100 *
‘batch_size‘ if not specified.

seed (Optional) ‘int‘ used to create a random seed for window size and subsampling.
See [‘set_random_seed‘](../../g3doc/python/constant_op.md#set_random_seed)
for behavior.

name (Optional) A ‘string‘ name or a name scope for the operations.

Details

Wrapper around ‘skip_gram_sample()‘ for use with a text vocabulary file. The vocabulary file
is expected to be a plain-text file, with lines of ‘vocab_delimiter‘-separated columns. The ‘vo-
cab_token_index‘ column should contain the vocabulary term, while the ‘vocab_freq_index‘ col-
umn should contain the number of times that term occurs in the corpus. For example, with a text
vocabulary file of: “‘ bonjour,fr,42 hello,en,777 hola,es,99 “‘ You should set ‘vocab_delimiter=","‘,
‘vocab_token_index=0‘, and ‘vocab_freq_index=2‘. See ‘skip_gram_sample()‘ documentation for
more details about the skip-gram sampling process.

Value

A ‘list‘ containing (token, label) ‘Tensors‘. Each output ‘Tensor‘ is of rank-1 and has the same type
as ‘input_tensor‘. The ‘Tensors‘ will be of length ‘batch_size‘; if ‘batch_size‘ is not specified, they
will be of random length, though they will be in sync with each other as long as they are evaluated
together.

Raises

ValueError: If ‘vocab_token_index‘ or ‘vocab_freq_index‘ is less than 0 or exceeds the number of
columns in ‘vocab_freq_file‘. If ‘vocab_token_index‘ and ‘vocab_freq_index‘ are both set to the
same column. If any token in ‘vocab_freq_file‘ has a negative frequency.

126 tile_batch

tfaddons_version Version of TensorFlow SIG Addons

Description

Get the current version of TensorFlow SIG Addons

Usage

tfaddons_version()

Value

prints the version.

tile_batch Tile batch

Description

Tile the batch dimension of a (possibly nested structure of) tensor(s)

Usage

tile_batch(t, multiplier, name = NULL)

Arguments

t ‘Tensor‘ shaped ‘[batch_size, ...]‘.

multiplier Python int.

name Name scope for any created operations.

Details

t. For each tensor t in a (possibly nested structure) of tensors, this function takes a tensor t shaped
‘[batch_size, s0, s1, ...]‘ composed of minibatch entries ‘t[0], ..., t[batch_size - 1]‘ and tiles it to
have a shape ‘[batch_size * multiplier, s0, s1, ...]‘ composed of minibatch entries ‘t[0], t[0], ..., t[1],
t[1], ...‘ where each minibatch entry is repeated ‘multiplier‘ times.

Value

A (possibly nested structure of) ‘Tensor‘ shaped ‘[batch_size * multiplier, ...]‘.

Raises

ValueError: if tensor(s) ‘t‘ do not have a statically known rank or the rank is < 1.

viterbi_decode 127

viterbi_decode Viterbi decode

Description

Decode the highest scoring sequence of tags outside of TensorFlow.

Usage

viterbi_decode(score, transition_params)

Arguments

score A [seq_len, num_tags] matrix of unary potentials.
transition_params

A [num_tags, num_tags] matrix of binary potentials.

Details

This should only be used at test time.

Value

viterbi: A [seq_len] list of integers containing the highest scoring tag indices. viterbi_score: A float
containing the score for the Viterbi sequence.

Index

activation_gelu, 5
activation_hardshrink, 6
activation_lisht, 7
activation_mish, 7
activation_rrelu, 8
activation_softshrink, 9
activation_sparsemax, 10
activation_tanhshrink, 10
attention_bahdanau, 11
attention_bahdanau_monotonic, 12
attention_luong, 13
attention_luong_monotonic, 15
attention_monotonic, 16
attention_wrapper, 17
attention_wrapper_state, 19

callback_average_model_checkpoint, 20
callback_time_stopping, 21
callback_tqdm_progress_bar, 22
crf_binary_score, 23
crf_decode, 24
crf_decode_backward, 24
crf_decode_forward, 25
crf_forward, 25
crf_log_likelihood, 26
crf_log_norm, 27
crf_multitag_sequence_score, 27
crf_sequence_score, 28
crf_unary_score, 29

decode_dynamic, 34
decoder, 29
decoder_base, 30
decoder_basic, 30
decoder_basic_output, 31
decoder_beam_search, 31
decoder_beam_search_output, 32
decoder_beam_search_state, 33
decoder_final_beam_search_output, 34

extend_with_decoupled_weight_decay, 35

gather_tree, 36
gather_tree_from_array, 37

hardmax, 38

img_adjust_hsv_in_yiq, 38
img_angles_to_projective_transforms,

39
img_blend, 40
img_compose_transforms, 40
img_connected_components, 41
img_cutout, 42
img_dense_image_warp, 43
img_equalize, 44
img_euclidean_dist_transform, 45
img_flat_transforms_to_matrices, 46
img_from_4D, 46
img_get_ndims, 47
img_interpolate_bilinear, 47
img_interpolate_spline, 48
img_matrices_to_flat_transforms, 49
img_mean_filter2d, 50
img_median_filter2d, 51
img_random_cutout, 52
img_random_hsv_in_yiq, 53
img_resampler, 54
img_rotate, 55
img_sharpness, 56
img_shear_x, 56
img_shear_y, 57
img_sparse_image_warp, 57
img_to_4D, 58
img_transform, 59
img_translate, 60
img_translate_xy, 61
img_translations_to_projective_transforms,

62
img_unwrap, 62

128

INDEX 129

img_wrap, 63
install_tfaddons, 63

layer_activation_gelu, 64
layer_correlation_cost, 64
layer_filter_response_normalization,

65
layer_group_normalization, 67
layer_instance_normalization, 68
layer_maxout, 70
layer_multi_head_attention, 70
layer_nas_cell, 72
layer_norm_lstm_cell, 73
layer_poincare_normalize, 75
layer_sparsemax, 76
layer_weight_normalization, 77
lookahead_mechanism, 78
loss_contrastive, 79
loss_giou, 80
loss_hamming, 81
loss_lifted_struct, 82
loss_npairs, 83
loss_npairs_multilabel, 83
loss_pinball, 84
loss_sequence, 85
loss_sigmoid_focal_crossentropy, 86
loss_sparsemax, 87
loss_triplet_hard, 88
loss_triplet_semihard, 89

metric_cohen_kappa, 91
metric_fbetascore, 92
metric_hamming_distance, 93
metric_mcc, 94
metric_multilabel_confusion_matrix, 95
metric_rsquare, 96
metrics_f1score, 90

optimizer_conditional_gradient, 97
optimizer_decay_adamw, 98
optimizer_decay_sgdw, 100
optimizer_lamb, 101
optimizer_lazy_adam, 103
optimizer_moving_average, 104
optimizer_novograd, 105
optimizer_radam, 107
optimizer_swa, 108
optimizer_yogi, 110

parse_time, 111

register_all, 112
register_custom_kernels, 113
register_keras_objects, 113

safe_cumprod, 114
sample_bernoulli, 120
sample_categorical, 120
sampler, 114
sampler_custom, 115
sampler_greedy_embedding, 115
sampler_inference, 116
sampler_sample_embedding, 117
sampler_scheduled_embedding_training,

118
sampler_scheduled_output_training, 118
sampler_training, 119
skip_gram_sample, 121
skip_gram_sample_with_text_vocab, 123

tfaddons_version, 126
tile_batch, 126

viterbi_decode, 127

	activation_gelu
	activation_hardshrink
	activation_lisht
	activation_mish
	activation_rrelu
	activation_softshrink
	activation_sparsemax
	activation_tanhshrink
	attention_bahdanau
	attention_bahdanau_monotonic
	attention_luong
	attention_luong_monotonic
	attention_monotonic
	attention_wrapper
	attention_wrapper_state
	callback_average_model_checkpoint
	callback_time_stopping
	callback_tqdm_progress_bar
	crf_binary_score
	crf_decode
	crf_decode_backward
	crf_decode_forward
	crf_forward
	crf_log_likelihood
	crf_log_norm
	crf_multitag_sequence_score
	crf_sequence_score
	crf_unary_score
	decoder
	decoder_base
	decoder_basic
	decoder_basic_output
	decoder_beam_search
	decoder_beam_search_output
	decoder_beam_search_state
	decoder_final_beam_search_output
	decode_dynamic
	extend_with_decoupled_weight_decay
	gather_tree
	gather_tree_from_array
	hardmax
	img_adjust_hsv_in_yiq
	img_angles_to_projective_transforms
	img_blend
	img_compose_transforms
	img_connected_components
	img_cutout
	img_dense_image_warp
	img_equalize
	img_euclidean_dist_transform
	img_flat_transforms_to_matrices
	img_from_4D
	img_get_ndims
	img_interpolate_bilinear
	img_interpolate_spline
	img_matrices_to_flat_transforms
	img_mean_filter2d
	img_median_filter2d
	img_random_cutout
	img_random_hsv_in_yiq
	img_resampler
	img_rotate
	img_sharpness
	img_shear_x
	img_shear_y
	img_sparse_image_warp
	img_to_4D
	img_transform
	img_translate
	img_translate_xy
	img_translations_to_projective_transforms
	img_unwrap
	img_wrap
	install_tfaddons
	layer_activation_gelu
	layer_correlation_cost
	layer_filter_response_normalization
	layer_group_normalization
	layer_instance_normalization
	layer_maxout
	layer_multi_head_attention
	layer_nas_cell
	layer_norm_lstm_cell
	layer_poincare_normalize
	layer_sparsemax
	layer_weight_normalization
	lookahead_mechanism
	loss_contrastive
	loss_giou
	loss_hamming
	loss_lifted_struct
	loss_npairs
	loss_npairs_multilabel
	loss_pinball
	loss_sequence
	loss_sigmoid_focal_crossentropy
	loss_sparsemax
	loss_triplet_hard
	loss_triplet_semihard
	metrics_f1score
	metric_cohen_kappa
	metric_fbetascore
	metric_hamming_distance
	metric_mcc
	metric_multilabel_confusion_matrix
	metric_rsquare
	optimizer_conditional_gradient
	optimizer_decay_adamw
	optimizer_decay_sgdw
	optimizer_lamb
	optimizer_lazy_adam
	optimizer_moving_average
	optimizer_novograd
	optimizer_radam
	optimizer_swa
	optimizer_yogi
	parse_time
	register_all
	register_custom_kernels
	register_keras_objects
	safe_cumprod
	sampler
	sampler_custom
	sampler_greedy_embedding
	sampler_inference
	sampler_sample_embedding
	sampler_scheduled_embedding_training
	sampler_scheduled_output_training
	sampler_training
	sample_bernoulli
	sample_categorical
	skip_gram_sample
	skip_gram_sample_with_text_vocab
	tfaddons_version
	tile_batch
	viterbi_decode
	Index

